File size: 20,281 Bytes
0672049
 
 
 
475c730
0672049
 
 
 
 
 
 
 
 
475c730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0672049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fb1919
 
 
 
 
0672049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87ca33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b69b7d
 
 
 
 
 
 
 
 
 
bc405bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87ca33
f3afc86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0672049
 
 
 
 
 
 
 
 
 
3fb1919
0672049
3b6604b
f87ca33
0672049
3b6604b
f87ca33
0672049
475c730
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
---
language:
- en
- de
license: cc-by-nc-4.0
library_name: transformers
tags:
- finetune
- dpo
- Instruct
- augmentation
- german
datasets:
- argilla/distilabel-math-preference-dpo
pipeline_tag: text-generation
model-index:
- name: LUNA-SOLARkrautLM-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 71.16
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.28
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 73.37
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.88
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
      name: Open LLM Leaderboard
---

![Juanako.AI & SauerkrautLM Productions](https://vago-solutions.de/wp-content/uploads/2023/12/sauerkrautlm-solar.png "LUNA-SOLARkrautLM-Instruct")
## VAGO solutions LUNA-SOLARkrautLM-Instruct
Introducing **LUNA-SOLARkrautLM-Instruct** – a UNA-Sauerkraut version of the powerful [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) ! 
Aligned with **DPO** and tamed with **UNA**.

# Table of Contents
1. [Overview of all LUNA-SOLARkrautLM-Instruct models](#all-sauerkrautlm-solar-instruct-models)
2. [Model Details](#model-details)
   - [Prompt template](#prompt-template)
   - [Training Dataset](#training-dataset)
   - [Data Contamination Test](#data-contamination-test-results)
3. [Evaluation](#evaluation)
5. [Disclaimer](#disclaimer)
6. [Contact](#contact)
7. [Collaborations](#collaborations)
8. [Acknowledgement](#acknowledgement)


## Model Details
**LUNA-SOLARkrautLM-Instruct**
- **Model Type:** LUNA-SOLARkrautLM-Instruct is a UNA  Model based on [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) and the powerful set of [SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct/)
- **Language(s):** English, German
- **License:** cc-by-nc-4.0
- **Contact:** [Website](https://vago-solutions.de/#Kontakt) [David Golchinfar](mailto:[email protected]) [Juanako.AI - UNA](mailto:[email protected])

### Training Dataset:

LUNA-SOLARkrautLM-Instruct was trained with mix of German data augmentation and translated data. 
Aligned through **DPO** with our **new German SauerkrautLM-DPO dataset** based on parts of the SFT SauerkrautLM dataset 
as chosen answers and [Sauerkraut-7b-HerO](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO) as rejected answers. Added with additional **translated Parts of the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)** (Our dataset do not contain any TruthfulQA prompts - check Data Contamination Test Results) and **[argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo).**  
We found, that only a simple translation of training data can lead to unnatural German phrasings. 
Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data. 

We improved the German language skills on this model. Nevertheless, certain formulations may occur that are not entirely correct.


### Data Contamination Test Results

Some models on the HuggingFace leaderboard had problems with wrong data getting mixed in.
We checked our SauerkrautLM-DPO dataset with a special test [1] on this model as target model and upstage/SOLAR-10.7B-Instruct-v1.0 as reference model. 
The HuggingFace team used the same methods [2, 3].

Our results, with `result < 0.1, %:` being well below 0.9, indicate that our dataset is free from contamination.

*The data contamination test results of HellaSwag and Winograde will be added once [1] supports them.*

| Dataset                        | ARC   | MMLU | TruthfulQA | GSM8K |
|------------------------------|-------|-------|-------|-------|
| **SauerkrautLM-DPO**| result < 0.1, %: 0.0 |result < 0.1, %: 0.09 | result < 0.1, %: 0.13 | result < 0.1, %: 0.16 |

[1] https://github.com/swj0419/detect-pretrain-code-contamination

[2] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06

[3] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230

### Prompt Template:
```
<|im_start|>system
Du bist LUNA-SOLARkrautLM, ein großes Sprachmodell, das höflich und kompetent antwortet.<|im_end|>
<|im_start|>user
Wie geht es dir?<|im_end|>
<|im_start|>assistant

```

```
### User:
Hello, how are you?

### Assistant:
Hi there! I am an AI language model, so I don't have personal feelings or emotions in the traditional sense. However, I can assure you that my systems and processes are functioning well at this moment, allowing me to provide helpful responses for your queries.
How may I assist you today?

```

## Evaluation
```

hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto
|Tasks|Version|  Filter  |n-shot|  Metric   |Value |   |Stderr|
|-----|-------|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|Yaml   |get-answer|     5|exact_match|0.6467|±  |0.0132|

hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64)
|    Tasks     |Version|Filter|n-shot|Metric|Value |   |Stderr|
|--------------|-------|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml   |none  |     0|acc   |0.7368|±  |0.0149|

hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 25, batch_size: auto (32)
|    Tasks    |Version|Filter|n-shot| Metric |Value|   |Stderr|
|-------------|-------|------|-----:|--------|----:|---|-----:|
|arc_challenge|Yaml   |none  |    25|acc     |0.692|±  |0.0135|
|             |       |none  |    25|acc_norm|0.715|±  |0.0132|

hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64)
|   Tasks   |Version|Filter|n-shot|Metric| Value |   |Stderr|
|-----------|-------|------|-----:|------|------:|---|-----:|
|paws_de    |Yaml   |none  |     0|acc   | 0.3965|±  |0.0109|
|wmt16-en-de|Yaml   |none  |     0|bleu  | 3.5784|±  |0.1325|
|           |       |none  |     0|ter   |64.5707|±  |0.4514|
|           |       |none  |     0|chrf  |45.7068|±  |0.3861|
|xnli_de    |Yaml   |none  |     0|acc   | 0.4129|±  |0.0099|

hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 10, batch_size: auto (32)
|  Tasks  |Version|Filter|n-shot| Metric |Value |   |Stderr|
|---------|-------|------|-----:|--------|-----:|---|-----:|
|hellaswag|Yaml   |none  |    10|acc     |0.7131|±  |0.0045|
|         |       |none  |    10|acc_norm|0.8815|±  |0.0032|

hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto (64)
|   Tasks   |Version|Filter|n-shot|Metric| Value |   |Stderr|
|-----------|-------|------|-----:|------|------:|---|-----:|
|wmt16-de-en|Yaml   |none  |     5|bleu  |14.9310|±  |0.8014|
|           |       |none  |     5|ter   |46.3206|±  |0.4087|
|           |       |none  |     5|chrf  |60.8637|±  |0.4436|
|wmt16-en-de|Yaml   |none  |     5|bleu  | 6.2016|±  |0.2918|
|           |       |none  |     5|ter   |63.9997|±  |0.4591|
|           |       |none  |     5|chrf  |51.1399|±  |0.3978|
|xnli_de    |Yaml   |none  |     5|acc   | 0.4703|±  |0.0100|

hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct,dtype=float16), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto (16)
|                 Tasks                 |Version|Filter|n-shot|Metric|Value |   |Stderr|
|---------------------------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu                                   |N/A    |none  |     0|acc   |0.6461|±  |0.1215|
| - humanities                          |N/A    |none  |     5|acc   |0.5960|±  |0.1200|
|  - formal_logic                       |Yaml   |none  |     5|acc   |0.4683|±  |0.0446|
|  - high_school_european_history       |Yaml   |none  |     5|acc   |0.8121|±  |0.0305|
|  - high_school_us_history             |Yaml   |none  |     5|acc   |0.8480|±  |0.0252|
|  - high_school_world_history          |Yaml   |none  |     5|acc   |0.8312|±  |0.0244|
|  - international_law                  |Yaml   |none  |     5|acc   |0.7851|±  |0.0375|
|  - jurisprudence                      |Yaml   |none  |     5|acc   |0.7685|±  |0.0408|
|  - logical_fallacies                  |Yaml   |none  |     5|acc   |0.7423|±  |0.0344|
|  - moral_disputes                     |Yaml   |none  |     5|acc   |0.7283|±  |0.0239|
|  - moral_scenarios                    |Yaml   |none  |     5|acc   |0.3899|±  |0.0163|
|  - philosophy                         |Yaml   |none  |     5|acc   |0.7074|±  |0.0258|
|  - prehistory                         |Yaml   |none  |     5|acc   |0.7716|±  |0.0234|
|  - professional_law                   |Yaml   |none  |     5|acc   |0.4824|±  |0.0128|
|  - world_religions                    |Yaml   |none  |     5|acc   |0.7661|±  |0.0325|
| - other                               |N/A    |none  |     5|acc   |0.7097|±  |0.0900|
|  - business_ethics                    |Yaml   |none  |     5|acc   |0.7700|±  |0.0423|
|  - clinical_knowledge                 |Yaml   |none  |     5|acc   |0.6792|±  |0.0287|
|  - college_medicine                   |Yaml   |none  |     5|acc   |0.6647|±  |0.0360|
|  - global_facts                       |Yaml   |none  |     5|acc   |0.3600|±  |0.0482|
|  - human_aging                        |Yaml   |none  |     5|acc   |0.6861|±  |0.0311|
|  - management                         |Yaml   |none  |     5|acc   |0.8350|±  |0.0368|
|  - marketing                          |Yaml   |none  |     5|acc   |0.8504|±  |0.0234|
|  - medical_genetics                   |Yaml   |none  |     5|acc   |0.6700|±  |0.0473|
|  - miscellaneous                      |Yaml   |none  |     5|acc   |0.7893|±  |0.0146|
|  - nutrition                          |Yaml   |none  |     5|acc   |0.7549|±  |0.0246|
|  - professional_accounting            |Yaml   |none  |     5|acc   |0.5213|±  |0.0298|
|  - professional_medicine              |Yaml   |none  |     5|acc   |0.7353|±  |0.0268|
|  - virology                           |Yaml   |none  |     5|acc   |0.5783|±  |0.0384|
| - social_sciences                     |N/A    |none  |     5|acc   |0.7501|±  |0.0684|
|  - econometrics                       |Yaml   |none  |     5|acc   |0.5175|±  |0.0470|
|  - high_school_geography              |Yaml   |none  |     5|acc   |0.8485|±  |0.0255|
|  - high_school_government_and_politics|Yaml   |none  |     5|acc   |0.8912|±  |0.0225|
|  - high_school_macroeconomics         |Yaml   |none  |     5|acc   |0.6615|±  |0.0240|
|  - high_school_microeconomics         |Yaml   |none  |     5|acc   |0.7311|±  |0.0288|
|  - high_school_psychology             |Yaml   |none  |     5|acc   |0.8385|±  |0.0158|
|  - human_sexuality                    |Yaml   |none  |     5|acc   |0.7023|±  |0.0401|
|  - professional_psychology            |Yaml   |none  |     5|acc   |0.6683|±  |0.0190|
|  - public_relations                   |Yaml   |none  |     5|acc   |0.6909|±  |0.0443|
|  - security_studies                   |Yaml   |none  |     5|acc   |0.7633|±  |0.0272|
|  - sociology                          |Yaml   |none  |     5|acc   |0.8358|±  |0.0262|
|  - us_foreign_policy                  |Yaml   |none  |     5|acc   |0.8800|±  |0.0327|
| - stem                                |N/A    |none  |     5|acc   |0.5569|±  |0.1360|
|  - abstract_algebra                   |Yaml   |none  |     5|acc   |0.3800|±  |0.0488|
|  - anatomy                            |Yaml   |none  |     5|acc   |0.6148|±  |0.0420|
|  - astronomy                          |Yaml   |none  |     5|acc   |0.7237|±  |0.0364|
|  - college_biology                    |Yaml   |none  |     5|acc   |0.7708|±  |0.0351|
|  - college_chemistry                  |Yaml   |none  |     5|acc   |0.4600|±  |0.0501|
|  - college_computer_science           |Yaml   |none  |     5|acc   |0.5400|±  |0.0501|
|  - college_mathematics                |Yaml   |none  |     5|acc   |0.2700|±  |0.0446|
|  - college_physics                    |Yaml   |none  |     5|acc   |0.3333|±  |0.0469|
|  - computer_security                  |Yaml   |none  |     5|acc   |0.7300|±  |0.0446|
|  - conceptual_physics                 |Yaml   |none  |     5|acc   |0.6213|±  |0.0317|
|  - electrical_engineering             |Yaml   |none  |     5|acc   |0.6276|±  |0.0403|
|  - elementary_mathematics             |Yaml   |none  |     5|acc   |0.4788|±  |0.0257|
|  - high_school_biology                |Yaml   |none  |     5|acc   |0.8065|±  |0.0225|
|  - high_school_chemistry              |Yaml   |none  |     5|acc   |0.5123|±  |0.0352|
|  - high_school_computer_science       |Yaml   |none  |     5|acc   |0.7000|±  |0.0461|
|  - high_school_mathematics            |Yaml   |none  |     5|acc   |0.3889|±  |0.0297|
|  - high_school_physics                |Yaml   |none  |     5|acc   |0.3576|±  |0.0391|
|  - high_school_statistics             |Yaml   |none  |     5|acc   |0.5926|±  |0.0335|
|  - machine_learning                   |Yaml   |none  |     5|acc   |0.4554|±  |0.0473|

|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.6461|±  |0.1215|
| - humanities     |N/A    |none  |     5|acc   |0.5960|±  |0.1200|
| - other          |N/A    |none  |     5|acc   |0.7097|±  |0.0900|
| - social_sciences|N/A    |none  |     5|acc   |0.7501|±  |0.0684|
| - stem           |N/A    |none  |     5|acc   |0.5569|±  |0.1360|
```
### MT-Bench
```
########## Average ##########
                                  score
model
gpt-4                          8.990625
gpt-3.5-turbo                  7.943750
claude-instant-v1              7.905660
claude-v1                      7.900000
UNA-SOLAR-10.7B-Instruct-v1.0  7.521875
LUNA-SOLARkrautLM-Instruct     7.462500
vicuna-33b-v1.3                7.121875
wizardlm-30b                   7.009375
Llama-2-70b-chat               6.856250
Llama-2-13b-chat               6.650000
guanaco-33b                    6.528125
tulu-30b                       6.434375
guanaco-65b                    6.409375
oasst-sft-7-llama-30b          6.409375
palm-2-chat-bison-001          6.400000
mpt-30b-chat                   6.393750
vicuna-13b-v1.3                6.387500
wizardlm-13b                   6.353125
Llama-2-7b-chat                6.268750
vicuna-7b-v1.3                 5.996875
baize-v2-13b                   5.750000
nous-hermes-13b                5.553459
mpt-7b-chat                    5.459119
gpt4all-13b-snoozy             5.452830
koala-13b                      5.350000
mpt-30b-instruct               5.218750
falcon-40b-instruct            5.168750
h2ogpt-oasst-open-llama-13b    4.625000
alpaca-13b                     4.531250
chatglm-6b                     4.500000
oasst-sft-4-pythia-12b         4.318750
rwkv-4-raven-14b               3.984375
dolly-v2-12b                   3.275000
fastchat-t5-3b                 3.040625
stablelm-tuned-alpha-7b        2.753125
llama-13b                      2.606250
```

## Disclaimer
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.
However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.
Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
 
## Contact
If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at [Dr. Daryoush Vaziri](mailto:[email protected]). We are also grateful for your feedback and suggestions.
 
## Collaborations
We are also keenly seeking support and investment for our startup, [VAGO Solutions](https://huggingface.co/VAGOsolutions), where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us.

[Juanako.AI](https://huggingface.co/fblgit) is also seeking support and investment for our startup, we also are open for collaborating with other labs to make awesome models like this one.

## Acknowledgement
Big Hug to [VAGO Solutions](https://huggingface.co/VAGOsolutions), we merely used our UNA transformers library on their code and dataset, nothing else. This won't be possible without them, thanks!

Many thanks to [argilla](https://huggingface.co/datasets/argilla) and [Huggingface](https://huggingface.co) for providing such valuable datasets to the Open-Source community. And of course a big thanks to [upstage](https://huggingface.co/upstage) for providing the open source community with their latest technology!

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__LUNA-SOLARkrautLM-Instruct)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.79|
|AI2 Reasoning Challenge (25-Shot)|71.16|
|HellaSwag (10-Shot)              |88.28|
|MMLU (5-Shot)                    |66.11|
|TruthfulQA (0-shot)              |73.37|
|Winogrande (5-shot)              |82.95|
|GSM8k (5-shot)                   |60.88|