Text Generation
Transformers
Safetensors
mistral
alignment-handbook
Generated from Trainer
text-generation-inference
fblgit commited on
Commit
e16b6d5
·
1 Parent(s): 4d90ce4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -2
README.md CHANGED
@@ -25,8 +25,46 @@ It achieves the following results on the evaluation set:
25
  - Logits/rejected: -2.5535
26
  - Logits/chosen: -2.7973
27
 
 
28
 
29
- ** Please feel free to run more tests and commit the results. Also if you are interested to participate in [UNA's paper research or GPU sponsorship](mailto:[email protected]) **
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  ## Model description
32
 
@@ -222,4 +260,48 @@ hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: No
222
  | - humanities |N/A |none |acc |0.5405|± |0.1478|
223
  | - other |N/A |none |acc |0.6894|± |0.1091|
224
  | - social_sciences|N/A |none |acc |0.7195|± |0.0676|
225
- | - stem |N/A |none |acc |0.5217|± |0.1149|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  - Logits/rejected: -2.5535
26
  - Logits/chosen: -2.7973
27
 
28
+ Followed [alignment-handbook](https://github.com/huggingface/alignment-handbook) to perform DPO (Phase 2) over Zephyr-SFT model.
29
 
30
+ **Please feel free to run more tests and commit the results. Also if you are interested to participate in [UNA's paper research or GPU sponsorship](mailto:[email protected])**
31
+
32
+ Special thanks to [TheBloke](https://huggingface.co/TheBloke) for converting the model into multiple formats and overall his enormous contribution to the community.
33
+ Here are the models:
34
+ * [juanako-7B-v1-AWQ](https://huggingface.co/TheBloke/juanako-7B-v1-AWQ)
35
+ * [juanako-7B-v1-GPTQ](https://huggingface.co/TheBloke/juanako-7B-v1-GPTQ)
36
+ * [juanako-7B-v1-GGUF](https://huggingface.co/TheBloke/juanako-7B-v1-GGUF)
37
+
38
+
39
+ ## Prompt and Inference Usage
40
+ ```
41
+ # Install transformers from source - only needed for versions <= v4.34
42
+ # pip install git+https://github.com/huggingface/transformers.git
43
+ # pip install accelerate
44
+
45
+ import torch
46
+ from transformers import pipeline
47
+
48
+ pipe = pipeline("text-generation", model="fblgit/juanako-7b-v1", torch_dtype=torch.float16, device_map="auto")
49
+
50
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
51
+ messages = [
52
+ {
53
+ "role": "system",
54
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
55
+ },
56
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
57
+ ]
58
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
59
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
60
+ print(outputs[0]["generated_text"])
61
+ # <|system|>
62
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
63
+ # <|user|>
64
+ # How many helicopters can a human eat in one sitting?</s>
65
+ # <|assistant|>
66
+ # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
67
+ ```
68
 
69
  ## Model description
70
 
 
260
  | - humanities |N/A |none |acc |0.5405|± |0.1478|
261
  | - other |N/A |none |acc |0.6894|± |0.1091|
262
  | - social_sciences|N/A |none |acc |0.7195|± |0.0676|
263
+ | - stem |N/A |none |acc |0.5217|± |0.1149|
264
+
265
+ ### Citations
266
+
267
+ @misc{tunstall2023zephyr,
268
+ title={Zephyr: Direct Distillation of LM Alignment},
269
+ author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
270
+ year={2023},
271
+ eprint={2310.16944},
272
+ archivePrefix={arXiv},
273
+ primaryClass={cs.LG}
274
+ }
275
+ @software{eval-harness,
276
+ author = {Gao, Leo and
277
+ Tow, Jonathan and
278
+ Biderman, Stella and
279
+ Black, Sid and
280
+ DiPofi, Anthony and
281
+ Foster, Charles and
282
+ Golding, Laurence and
283
+ Hsu, Jeffrey and
284
+ McDonell, Kyle and
285
+ Muennighoff, Niklas and
286
+ Phang, Jason and
287
+ Reynolds, Laria and
288
+ Tang, Eric and
289
+ Thite, Anish and
290
+ Wang, Ben and
291
+ Wang, Kevin and
292
+ Zou, Andy},
293
+ title = {A framework for few-shot language model evaluation},
294
+ month = sep,
295
+ year = 2021,
296
+ publisher = {Zenodo},
297
+ version = {v0.0.1},
298
+ doi = {10.5281/zenodo.5371628},
299
+ url = {https://doi.org/10.5281/zenodo.5371628}
300
+ }
301
+ @misc{rafailov2023direct,
302
+ title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model},
303
+ author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
304
+ year={2023},
305
+ eprint={2305.18290},
306
+ archivePrefix={arXiv},
307
+ }