fdfyaytkt nielsr HF staff commited on
Commit
b0e4fb2
·
verified ·
1 Parent(s): 5ddcdd2

Improve model card: Add pipeline tag, library name and link to github (#1)

Browse files

- Improve model card: Add pipeline tag, library name and link to github (4612a305d3799605b85352ead3517e649df9a35f)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +50 -3
README.md CHANGED
@@ -1,3 +1,50 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ pipeline_tag: video-classification
4
+ library_name: pytorch
5
+ ---
6
+
7
+ # EAR-WACV25-DAKiet-TSM
8
+
9
+ The model was presented in the paper [](https://huggingface.co/papers/2503.07821).
10
+
11
+ This model is a Temporal Shift Module (TSM) based video classification model with a resnext50_32x4d backbone.
12
+
13
+ **Github Repository:** https://github.com/fdfyaytkt/EAR-WACV25-DAKiet-TSM
14
+
15
+ ## Data
16
+ The model was trained on a combination of datasets:
17
+
18
+ * **Toyota Smarthome dataset:** Used for activity recognition.
19
+ * **ETRI-Activity3D:** RGB videos (specific subsets or full dataset used depending on configuration).
20
+ * **ETRI-Activity3D-LivingLab:** RGB videos (specific subsets or full dataset used depending on configuration).
21
+
22
+ Two configurations are detailed below, with their respective public leaderboard scores:
23
+
24
+ ### Config 1 (Public Leaderboard: 0.84402)
25
+
26
+ * Toyota Smarthome dataset
27
+ * ETRI-Activity3D - RGB videos (RGB\_P091-P100)
28
+ * ETRI-Activity3D-LivingLab - RGB videos (RGB(P201-P230))
29
+
30
+ ### Config 2 (Public Leaderboard: 0.78856)
31
+
32
+ * Toyota Smarthome dataset
33
+ * ETRI-Activity3D - RGB videos (full)
34
+ * ETRI-Activity3D-LivingLab - RGB videos (full)
35
+
36
+ ## Running
37
+
38
+ Example training and evaluation commands are provided below. Refer to the repository for complete details and options:
39
+
40
+ ### Train
41
+
42
+ ```console
43
+ python main.py elderly RGB --arch resnext50_32x4d --num_segments 8 --gd 20 --lr 0.001 --wd 1e-4 --lr_steps 20 40 --epochs 100 --batch-size 4 -j 32 --dropout 0.5 --consensus_type=avg --eval-freq=1 --shift --shift_div=8 --shift_place=blockres --npb
44
+ ```
45
+
46
+ ### Eval
47
+
48
+ ```console
49
+ python generate_submission.py elderly --arch=resnext50_32x4d --csv_file=submission.csv --weights=checkpoint/TSM_elderly_RGB_resnext50_32x4d_shift8_blockres_avg_segment8_e100/ckpt.best.pth.tar --test_segments=8 --batch_size=1 --test_crops=1
50
+ ```