Improve model card: Add pipeline tag, library name and link to github (#1)
Browse files- Improve model card: Add pipeline tag, library name and link to github (4612a305d3799605b85352ead3517e649df9a35f)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,3 +1,50 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
pipeline_tag: video-classification
|
4 |
+
library_name: pytorch
|
5 |
+
---
|
6 |
+
|
7 |
+
# EAR-WACV25-DAKiet-TSM
|
8 |
+
|
9 |
+
The model was presented in the paper [](https://huggingface.co/papers/2503.07821).
|
10 |
+
|
11 |
+
This model is a Temporal Shift Module (TSM) based video classification model with a resnext50_32x4d backbone.
|
12 |
+
|
13 |
+
**Github Repository:** https://github.com/fdfyaytkt/EAR-WACV25-DAKiet-TSM
|
14 |
+
|
15 |
+
## Data
|
16 |
+
The model was trained on a combination of datasets:
|
17 |
+
|
18 |
+
* **Toyota Smarthome dataset:** Used for activity recognition.
|
19 |
+
* **ETRI-Activity3D:** RGB videos (specific subsets or full dataset used depending on configuration).
|
20 |
+
* **ETRI-Activity3D-LivingLab:** RGB videos (specific subsets or full dataset used depending on configuration).
|
21 |
+
|
22 |
+
Two configurations are detailed below, with their respective public leaderboard scores:
|
23 |
+
|
24 |
+
### Config 1 (Public Leaderboard: 0.84402)
|
25 |
+
|
26 |
+
* Toyota Smarthome dataset
|
27 |
+
* ETRI-Activity3D - RGB videos (RGB\_P091-P100)
|
28 |
+
* ETRI-Activity3D-LivingLab - RGB videos (RGB(P201-P230))
|
29 |
+
|
30 |
+
### Config 2 (Public Leaderboard: 0.78856)
|
31 |
+
|
32 |
+
* Toyota Smarthome dataset
|
33 |
+
* ETRI-Activity3D - RGB videos (full)
|
34 |
+
* ETRI-Activity3D-LivingLab - RGB videos (full)
|
35 |
+
|
36 |
+
## Running
|
37 |
+
|
38 |
+
Example training and evaluation commands are provided below. Refer to the repository for complete details and options:
|
39 |
+
|
40 |
+
### Train
|
41 |
+
|
42 |
+
```console
|
43 |
+
python main.py elderly RGB --arch resnext50_32x4d --num_segments 8 --gd 20 --lr 0.001 --wd 1e-4 --lr_steps 20 40 --epochs 100 --batch-size 4 -j 32 --dropout 0.5 --consensus_type=avg --eval-freq=1 --shift --shift_div=8 --shift_place=blockres --npb
|
44 |
+
```
|
45 |
+
|
46 |
+
### Eval
|
47 |
+
|
48 |
+
```console
|
49 |
+
python generate_submission.py elderly --arch=resnext50_32x4d --csv_file=submission.csv --weights=checkpoint/TSM_elderly_RGB_resnext50_32x4d_shift8_blockres_avg_segment8_e100/ckpt.best.pth.tar --test_segments=8 --batch_size=1 --test_crops=1
|
50 |
+
```
|