federicopascual commited on
Commit
fa24172
1 Parent(s): fbf0938

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imdb
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: finetuning-sentiment-model-3000-samples-testcopy
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: imdb
18
+ type: imdb
19
+ args: plain_text
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.87
24
+ - name: F1
25
+ type: f1
26
+ value: 0.8761904761904761
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # finetuning-sentiment-model-3000-samples-testcopy
33
+
34
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.3374
37
+ - Accuracy: 0.87
38
+ - F1: 0.8762
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 16
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 2
64
+
65
+ ### Training results
66
+
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.15.0
72
+ - Pytorch 1.10.0+cu111
73
+ - Datasets 1.17.0
74
+ - Tokenizers 0.10.3