File size: 4,990 Bytes
91b95ce
19b6b68
 
4f86980
19b6b68
4f86980
 
8a9bb68
 
e573afd
 
8a9bb68
 
 
 
 
 
 
 
 
 
 
 
6361496
8a9bb68
 
 
6361496
8a9bb68
 
 
6361496
8a9bb68
 
 
6361496
8a9bb68
 
 
6361496
8a9bb68
 
 
6361496
8a9bb68
 
 
6361496
8a9bb68
 
 
6361496
8a9bb68
 
 
6361496
91b95ce
 
 
 
 
 
 
 
 
 
 
 
8a9bb68
 
 
 
 
91b95ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9bb68
91b95ce
 
 
 
 
 
 
 
 
 
8a9bb68
91b95ce
 
 
 
 
 
 
8a9bb68
91b95ce
 
 
8a9bb68
91b95ce
 
 
8a9bb68
91b95ce
 
 
8a9bb68
 
91b95ce
 
 
8a9bb68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
language:
- en
license: mit
library_name: transformers
datasets:
- fedora-copr/autoannotated_snippets_mistral
metrics:
- rouge
tags:
- code
model_index:
  name: phi-2-snippets-logdetective
  results:
  - task:
      type: text-generation
    dataset:
      type: fedora-copr/autoannotated_snippets_mistral
      name: autoannotated_snippets_mistral
    metrics:
      - name: rouge-1-recall
        type: rouge-1
        value: 0.4928060294187831
        verified: false
      - name: rouge-1-precision
        type: rouge-1
        value: 0.3842279864863966
        verified: false
      - name: rouge-1-f1
        type: rouge-1
        value: 0.4228375247665276
        verified: false
      - name: rouge-2-recall
        type: rouge-2
        value: 0.22104701377745636
        verified: false
      - name: rouge-2-precision
        type: rouge-2
        value: 0.15216741180621804
        verified: false
      - name: rouge-2-f1
        type: rouge-2
        value: 0.17506785950227427
        verified: false
      - name: rouge-l-recall
        type: rouge-l
        value: 0.4588693388086414
        verified: false
      - name: rouge-l-precision
        type: rouge-l
        value: 0.3579633500466938
        verified: false
      - name: rouge-l-f1
        type: rouge-l
        value: 0.3938760006165079
        verified: false
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Jiri Podivin <[email protected]>
- **Model type:** phi-2
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model [optional]:** microsoft/phi-2


### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[fedora-copr/autoannotated_snippets_mistral](https://huggingface.co/datasets/fedora-copr/autoannotated_snippets_mistral)

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->
Rouge metric was used to compare model outputs with expected annotations from test subset.

### Results

[More Information Needed]

#### Summary

## Technical Specifications

### Compute Infrastructure

Single node

#### Hardware

- 1 * GeForce RTX 4090

#### Software

- transformers
- peft

## Model Card Authors [optional]

- Jiri Podivin <[email protected]>