File size: 4,990 Bytes
91b95ce 19b6b68 4f86980 19b6b68 4f86980 8a9bb68 e573afd 8a9bb68 6361496 8a9bb68 6361496 8a9bb68 6361496 8a9bb68 6361496 8a9bb68 6361496 8a9bb68 6361496 8a9bb68 6361496 8a9bb68 6361496 8a9bb68 6361496 91b95ce 8a9bb68 91b95ce 8a9bb68 91b95ce 8a9bb68 91b95ce 8a9bb68 91b95ce 8a9bb68 91b95ce 8a9bb68 91b95ce 8a9bb68 91b95ce 8a9bb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
---
language:
- en
license: mit
library_name: transformers
datasets:
- fedora-copr/autoannotated_snippets_mistral
metrics:
- rouge
tags:
- code
model_index:
name: phi-2-snippets-logdetective
results:
- task:
type: text-generation
dataset:
type: fedora-copr/autoannotated_snippets_mistral
name: autoannotated_snippets_mistral
metrics:
- name: rouge-1-recall
type: rouge-1
value: 0.4928060294187831
verified: false
- name: rouge-1-precision
type: rouge-1
value: 0.3842279864863966
verified: false
- name: rouge-1-f1
type: rouge-1
value: 0.4228375247665276
verified: false
- name: rouge-2-recall
type: rouge-2
value: 0.22104701377745636
verified: false
- name: rouge-2-precision
type: rouge-2
value: 0.15216741180621804
verified: false
- name: rouge-2-f1
type: rouge-2
value: 0.17506785950227427
verified: false
- name: rouge-l-recall
type: rouge-l
value: 0.4588693388086414
verified: false
- name: rouge-l-precision
type: rouge-l
value: 0.3579633500466938
verified: false
- name: rouge-l-f1
type: rouge-l
value: 0.3938760006165079
verified: false
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Jiri Podivin <[email protected]>
- **Model type:** phi-2
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model [optional]:** microsoft/phi-2
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[fedora-copr/autoannotated_snippets_mistral](https://huggingface.co/datasets/fedora-copr/autoannotated_snippets_mistral)
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
Rouge metric was used to compare model outputs with expected annotations from test subset.
### Results
[More Information Needed]
#### Summary
## Technical Specifications
### Compute Infrastructure
Single node
#### Hardware
- 1 * GeForce RTX 4090
#### Software
- transformers
- peft
## Model Card Authors [optional]
- Jiri Podivin <[email protected]>
|