File size: 13,737 Bytes
54b81ab |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7867d6c42e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7867d6c42ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7867d6c42f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7867d6c43010>", "_build": "<function ActorCriticPolicy._build at 0x7867d6c430a0>", "forward": "<function ActorCriticPolicy.forward at 0x7867d6c43130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7867d6c431c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7867d6c43250>", "_predict": "<function ActorCriticPolicy._predict at 0x7867d6c432e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7867d6c43370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7867d6c43400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7867d6c43490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7867d7529040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704663941165279326, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD2uL0UUIq6TXufOVTMgjRbCzu7RYCaMwAAgD8AAAAAZhNnPZVrtT42Ixy+7lnJvuHTzTzcvMm9AAAAAAAAAABm1io9uHb2uWb04bp3goy1h61jul+pAjoAAIA/AACAPzNs2z0Kpy25flx/uXfjpLTgj4Q6HNuVOAAAAAAAAIA/wE2fvSlYZLr6sTq6E3KgtZKU1jpYUFg5AACAPwAAgD+ANJG9jxZmunMz2Tr9sVI19BFNOuLbTTQAAIA/AAAAAI2ypL1xLSW5kTMYuiAXFbU/vxU67uI1OQAAgD8AAIA/Gr44PfYcd7p470s4ZeW3M5Rmpznyvmq3AACAPwAAgD+NurW9PSoDuXIRr7l8OII1Fy0bvC2g0jgAAIA/AACAP/PmsD3LODM/RZpHPcLZ8L4EHQE+EH79vAAAAAAAAAAAAJvhPIUz/7ma1W07mWV8OPNChzpNsg26AACAPwAAgD/NzDQ911NMuYxGlLfVp1O1vIDBukrCtDYAAIA/AACAP4B2bj0UuIu6nBcWOg3LOTXRd6G3UjstuQAAgD8AAIA/2tegvY+6NLr9pdm7Q0KeN86U9bp6pAG3AACAPwAAgD+A/gE+VJGyPVvSbL67lE2+TOtuvTUzZbwAAAAAAAAAADNvwD0p6GS6aqSBO/S82jYakIq55ojPNQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUl+VcD8tSMAWyUTegDjAF0lEdAmojqk690zXV9lChoBkdAZhlYEGJN02gHTegDaAhHQJqK8xN7Bwd1fZQoaAZHQCRWXokiUxFoB0uqaAhHQJqPNri2lVN1fZQoaAZHQG6FITwlSjxoB00IA2gIR0CalK0Z3s5XdX2UKGgGR0BhwVmWdEsraAdN6ANoCEdAmpsYmw7kn3V9lChoBkdAZZFn7Hhjv2gHTegDaAhHQJqcABS1map1fZQoaAZHQGGB/SH/LkloB03oA2gIR0CanP7fHggpdX2UKGgGR0BlA329L6DXaAdN6ANoCEdAmp9Nk8Rtg3V9lChoBkdANs/4M4LkS2gHS5ZoCEdAmqQKbrkbP3V9lChoBkdAYy+WKuSwGGgHTegDaAhHQJsLQKqn3td1fZQoaAZHQGbPSi/O+qRoB03oA2gIR0CbEHXPZ7HAdX2UKGgGR0Bhjkd3jdYXaAdN6ANoCEdAmxFTURWcSXV9lChoBkdAR2sCaJAMUmgHS79oCEdAmxHNA5aNdnV9lChoBkdAYt4Njslb/2gHTegDaAhHQJsTvtIClrN1fZQoaAZHQGKdpn6Eal1oB03oA2gIR0CbFTLhaTwEdX2UKGgGR0BkUDo0Q9RraAdN6ANoCEdAmxXKxTsIFHV9lChoBkdAZmJhOxjawmgHTegDaAhHQJsaLGipNsZ1fZQoaAZHQD/MkdFOO81oB0utaAhHQJsdVIH1OCZ1fZQoaAZHQF4wBreqJdloB03oA2gIR0CbHj8xbjcVdX2UKGgGR0BkgqrksBhhaAdN6ANoCEdAmx/sNUfgaXV9lChoBkdAYlzdDYywfWgHTegDaAhHQJshacXm/351fZQoaAZHQGe5Rw6ySmtoB03oA2gIR0CbJSdyksSTdX2UKGgGR0Bu+B1PnB+GaAdN3AFoCEdAmyebkbPyCnV9lChoBkdARSScEvCdjGgHS69oCEdAmygokRjBmHV9lChoBkdAZIkysS00FmgHTegDaAhHQJsqKk9ECvJ1fZQoaAZHQF6vIqLCN0hoB03oA2gIR0CbMXbrC3w1dX2UKGgGR0BIoJjMFEApaAdLvGgIR0CbMkQ1aW5ZdX2UKGgGR0Bhv6i0v4/NaAdN6ANoCEdAmzJYLXtjTnV9lChoBkdAZetDNQj2SWgHTegDaAhHQJs1l2St/4J1fZQoaAZHQEqvDNyHVPNoB0vOaAhHQJs7yI/JNj91fZQoaAZHQGk755iVjZtoB03oA2gIR0CbPUnoxHoYdX2UKGgGR0ByGUH0K7ZnaAdNGAFoCEdAm0MfpdKNAHV9lChoBkdAY63XQMQVbmgHTegDaAhHQJtDIBYFJQN1fZQoaAZHQGQ/iQtBfKJoB03oA2gIR0CbQ6KohpxndX2UKGgGR0Bif2z0HyEtaAdN6ANoCEdAm0Wz4593KXV9lChoBkdAYyT1ZDArQWgHTegDaAhHQJtHTSMLncN1fZQoaAZHQEx6c6vJRwZoB0uaaAhHQJtK8lme18d1fZQoaAZHQEebEroW56NoB0vFaAhHQJtMfpnpSrJ1fZQoaAZHQF511iONo8JoB03oA2gIR0CbTOMRHww1dX2UKGgGR0BkECmGdqcmaAdN6ANoCEdAm1AbjHXEqHV9lChoBkdAZWLRnezlcWgHTegDaAhHQJtSvoePq9p1fZQoaAZHQGdF3iJfplloB03oA2gIR0CbVE/CIk7fdX2UKGgGR0BjUzHp8neBaAdN6ANoCEdAm1eSJ9AoonV9lChoBkdARQr/yXlbNmgHS69oCEdAm1lfqX4TK3V9lChoBkdAZEoDr7fpEGgHTegDaAhHQJtap2nsLOR1fZQoaAZHQFd99OymhuhoB03oA2gIR0CbXSIv8IiUdX2UKGgGR0BMnXvYvnKXaAdLomgIR0CbXhGsFMZhdX2UKGgGR0Bmblq8DjioaAdN6ANoCEdAm2XIR7JGOXV9lChoBkdAZgeNfgJkXmgHTegDaAhHQJtmm3rleWx1fZQoaAZHQGdvptSAH3VoB03oA2gIR0CbcSrVvuPWdX2UKGgGR0BlqRSk0rLAaAdN6ANoCEdAm3LnzpX6qXV9lChoBkdAZJfXg9/z8WgHTegDaAhHQJvcJ3dKujh1fZQoaAZHQGESkzfrKNhoB03oA2gIR0Cb3wK/EfkndX2UKGgGR0BjykvboKUnaAdN6ANoCEdAm+DLKzRhMXV9lChoBkdAYhGKR+z+m2gHTegDaAhHQJvk72OAAhl1fZQoaAZHQGPtEi2UjcFoB03oA2gIR0Cb5qJ3PiT/dX2UKGgGR0Bm1ezD4xk/aAdN6ANoCEdAm+cNMK1G9nV9lChoBkdASKfoTwlSj2gHS6BoCEdAm+d2p2ll9XV9lChoBkdAP+y6H0se4mgHS35oCEdAm+d3gxagVXV9lChoBkdAZPXO0svqT2gHTegDaAhHQJvs8rCm/Fl1fZQoaAZHwAApaRp1zQxoB0usaAhHQJvvI6GQCCB1fZQoaAZHQEarZ4fOlftoB0u8aAhHQJvwkgNgBtF1fZQoaAZHQGW59iMHbAVoB03oA2gIR0Cb8fR6F/QTdX2UKGgGR0BJv77bcoH+aAdL12gIR0Cb8nWhRIjGdX2UKGgGR0Bi6o9LYf4iaAdN6ANoCEdAm/OAg1WKdnV9lChoBkdAZbIU47zTW2gHTegDaAhHQJv0S0x/NJR1fZQoaAZHQDbcEeQuEmJoB0uSaAhHQJv0g2XLNfR1fZQoaAZHQGKq0TcqOLloB03oA2gIR0Cb9iyRB/qgdX2UKGgGR0Bkkc9fTkQxaAdN6ANoCEdAm/cUK7ZnMHV9lChoBkdAPR1bqyGBWmgHS55oCEdAm/jDYEnss3V9lChoBkdAS3kB4lhPTGgHS5hoCEdAm/o0q6OHWXV9lChoBkdAQzRMBZIQOGgHS6NoCEdAm/pO1rqMWHV9lChoBkdAUE/XOGCZnmgHS5VoCEdAm/ssK9f1H3V9lChoBkdAZYh86V+qi2gHTegDaAhHQJv8zQpnYg91fZQoaAZHQGQJ38XN1QtoB03oA2gIR0Cb/ZlOXVsldX2UKGgGR0A+KgP3BYV7aAdLnGgIR0Cb/h8Gs3hodX2UKGgGR0BKdGXXyy2QaAdLqWgIR0Cb/4Y77sOYdX2UKGgGR0A5pKa5PM0QaAdLl2gIR0CcAE029+PSdX2UKGgGR0Ag6h7E5yU+aAdLrGgIR0CcBgAlOXVtdX2UKGgGR0BisHWe6I3zaAdN6ANoCEdAnAcwxWT5f3V9lChoBkdASGOBSUC7smgHS7RoCEdAnAfabWmP53V9lChoBkdAYnpsbedkKGgHTegDaAhHQJwIuzsyBTZ1fZQoaAZHQF6jv4dp7C1oB03oA2gIR0CcDxdiUgSwdX2UKGgGR8AhajN6gM+eaAdLuGgIR0CcETzWf9P2dX2UKGgGR0BktBzHS4OMaAdN6ANoCEdAnBhwzguRLnV9lChoBkdAT6Tb1yvLYGgHS4toCEdAnBkcL8aXKXV9lChoBkdAZiU6RyOrAGgHTegDaAhHQJwa/C+De0p1fZQoaAZHQF4I2H+IdlxoB03oA2gIR0CcI5rxAjY7dX2UKGgGR0BmAYHHFPznaAdN6ANoCEdAnClBXfZVXHV9lChoBkdAYXI+Y+jdpWgHTegDaAhHQJwpjAXVLBd1fZQoaAZHQCYR+az/p+toB0uxaAhHQJwvGEPDpC91fZQoaAZHQGOAIlUp/gBoB03oA2gIR0CcMbqgAZKndX2UKGgGR0Bh2e6mO2iMaAdN6ANoCEdAnDHgp4KQaXV9lChoBkdAZBjHQQcxTWgHTegDaAhHQJwy3SNOuaF1fZQoaAZHQGUB0ulGgBdoB03oA2gIR0CcNPGLUCq7dX2UKGgGR0BlH1BMSK3vaAdN6ANoCEdAnDXw5aNdaHV9lChoBkdAZjc1/DtPYWgHTegDaAhHQJw41Ukv9Lp1fZQoaAZHQGKCLrgOz6doB03oA2gIR0CcPt5ZbILgdX2UKGgGR0Bkfl2cJ+lTaAdN6ANoCEdAnEDEDMeOn3V9lChoBkdAaRxnjABT42gHTegDaAhHQJxBtmseXAx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.975, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |