fffaaannn commited on
Commit
47dcb32
1 Parent(s): ee8c128

push MountainCar-v0 model

Browse files
MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82f69ba20cf40b9e5c4c7f9a3b3296a8a12e24e05a5f9959196feeb4e5e4089f
3
+ size 99567
MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.2
MountainCar-v0/data ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x298ec7880>",
9
+ "_build": "<function DQNPolicy._build at 0x298ec7910>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x298ec79a0>",
11
+ "forward": "<function DQNPolicy.forward at 0x298ec7a30>",
12
+ "_predict": "<function DQNPolicy._predict at 0x298ec7ac0>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x298ec7b50>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x298ec7be0>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x298ee9340>"
17
+ },
18
+ "verbose": 2,
19
+ "policy_kwargs": {},
20
+ "num_timesteps": 1000000,
21
+ "_total_timesteps": 1000000,
22
+ "_num_timesteps_at_start": 0,
23
+ "seed": null,
24
+ "action_noise": null,
25
+ "start_time": 1721716908791064000,
26
+ "learning_rate": 0.001,
27
+ "tensorboard_log": null,
28
+ "_last_obs": {
29
+ ":type:": "<class 'numpy.ndarray'>",
30
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAPFXAr/qCJm8H8QBv22MSLwylQq/+zwkvMbvDb+VmES8cn8Kv/CWJLxzExC/9KyIvAkaBL+thae8aCLyvpetq7ytTRO/lmAovOO+C79l8jq8U/cHv9L3zrtXXwm/7SyjvDQlHr+Y0aC8/dARvx+yprxSgwm/jy6rvJgsGL+b6p68lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
31
+ },
32
+ "_last_episode_starts": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_original_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAFMf+76az46820P9vuCcNLw+BAi/ri8lvGTdCr/76Ea8Fu0Hv4d+JbwLzgu/zQ6KvLi7/b48nJ28j2fnvlgen7wqrBC/k3ctvBnTCL9ZSDy8Y1kGv3xDz7vvRQS/Jo+avKceGb8IXKW8bJsMvyFFqLzeKQS/DIqivEM1E79dEKK8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_episode_num": 4992,
41
+ "use_sde": false,
42
+ "sde_sample_freq": -1,
43
+ "_current_progress_remaining": 0.0,
44
+ "_stats_window_size": 100,
45
+ "ep_info_buffer": {
46
+ ":type:": "<class 'collections.deque'>",
47
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0BPXuARTS9edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPXtdAxBVudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPXsA3kxREdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPXrdWQwK0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaphfBvaUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPao6S1Vo6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaneBQN1AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPam29cry2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPamJFb3XadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPalpwjt5VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPalOfukULdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPakyckMTfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPakTQE6kqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaj1XeWOZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPajYZl4C7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPai8nNPgvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaifQKKHgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPah73PAwgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPagfuCwr2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaf8VHnU2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdc89wFTvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdcVpKzzFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPda5f+jubdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdaScLBsRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdZksjFAFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdZFPSDywdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdYqG1x82dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdYODrZ8KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdXu3MINWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdXRG+bmVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdW0AtFrmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdWYOUdJbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdV6/qPfbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdVXmvGIbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdT7di2DydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdTYEnssydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgNGEwnIAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgMfaHsTndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgLDZUT+OdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgKcd5prUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgJuuRs/IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgJPZZjhDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgI0ZWJaadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgIYWLxZudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgH5SFXaKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgHbqQiiZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgG+sYEW7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgGjCYTkAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgGICU5dXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgFk6Lfk4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgEI5YHPedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgDmbLEDRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlZGKAJ9idX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlYfGMn7YdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlXCsOoYOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlWbobGWEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlVtwaR6odX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlVOTJQtSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlUzTF2mpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlUXHim2tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlT37DVH4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlTaCcwxndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlS88La24dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlShSLqD9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlSD7IkqudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlRgiNbTudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlQEZBLPEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlPhAGB4EdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoP/JeVs2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoPX05EMLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoN7a7EpBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoNUXHim3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoMmnfl6rdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoMHB1s+FdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoLr5ZbIMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoLPt2LYPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoKwpvxYrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoKSxJNCadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoJ1q33HrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoJZ4fOlgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoI8p1A7gdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoIZQ53kgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoG9Htnf3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoGZuyeI3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrGus90RwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrGHpKSPmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrErXlKbsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrEETxoZidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrDWbwz+FdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrC2+fywwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrCb2Dg62dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrB/y5I6KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrBgmZ3LWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrBC2MKkVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrAlv60pmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrAJ9iMHbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPq/smfGuLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPq/JNj9XLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPq9tEXtSidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPq9Jrcj7idWUu"
48
+ },
49
+ "ep_success_buffer": {
50
+ ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
52
+ },
53
+ "_n_updates": 15610,
54
+ "observation_space": {
55
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
56
+ ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
57
+ "dtype": "float32",
58
+ "bounded_below": "[ True True]",
59
+ "bounded_above": "[ True True]",
60
+ "_shape": [
61
+ 2
62
+ ],
63
+ "low": "[-1.2 -0.07]",
64
+ "high": "[0.6 0.07]",
65
+ "low_repr": "[-1.2 -0.07]",
66
+ "high_repr": "[0.6 0.07]",
67
+ "_np_random": null
68
+ },
69
+ "action_space": {
70
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
71
+ ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQBx8egLZpGh4MMqFFXIHkaowDaW5jlIoROdEr1XWt8YFtEbleaJjrjQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRK3ULLb3VidWIu",
72
+ "n": "3",
73
+ "start": "0",
74
+ "_shape": [],
75
+ "dtype": "int64",
76
+ "_np_random": "Generator(PCG64)"
77
+ },
78
+ "n_envs": 16,
79
+ "buffer_size": 10000,
80
+ "batch_size": 64,
81
+ "learning_starts": 1000,
82
+ "tau": 1.0,
83
+ "gamma": 0.99,
84
+ "gradient_steps": 1,
85
+ "optimize_memory_usage": false,
86
+ "replay_buffer_class": {
87
+ ":type:": "<class 'abc.ABCMeta'>",
88
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
89
+ "__module__": "stable_baselines3.common.buffers",
90
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
91
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
92
+ "__init__": "<function ReplayBuffer.__init__ at 0x298bfad40>",
93
+ "add": "<function ReplayBuffer.add at 0x298bfadd0>",
94
+ "sample": "<function ReplayBuffer.sample at 0x298bfae60>",
95
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x298bfaef0>",
96
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x298bfaf80>)>",
97
+ "__abstractmethods__": "frozenset()",
98
+ "_abc_impl": "<_abc._abc_data object at 0x2988ec740>"
99
+ },
100
+ "replay_buffer_kwargs": {},
101
+ "train_freq": {
102
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
103
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
104
+ },
105
+ "use_sde_at_warmup": false,
106
+ "exploration_initial_eps": 1.0,
107
+ "exploration_final_eps": 0.05,
108
+ "exploration_fraction": 0.1,
109
+ "target_update_interval": 500,
110
+ "_n_calls": 62500,
111
+ "max_grad_norm": 10,
112
+ "exploration_rate": 0.05,
113
+ "lr_schedule": {
114
+ ":type:": "<class 'function'>",
115
+ ":serialized:": "gAWV0wMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lEthQwIMAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMcS9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjEwL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCNoPX2UfZQoaBhoNGgmjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgofZRoKk5oK05oLGgZaC1OaC5oMEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEVdlGhHfZR1hpSGUjAu"
116
+ },
117
+ "batch_norm_stats": [],
118
+ "batch_norm_stats_target": [],
119
+ "exploration_schedule": {
120
+ ":type:": "<class 'function'>",
121
+ ":serialized:": "gAWVmAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3NDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMcS9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjEwL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
122
+ }
123
+ }
MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2488dfa87ce2f1cb9baa85e689ba20969ae473bc701fea46ad5926879fc120bb
3
+ size 41632
MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9b5efaea9593fc67675c9453ed7659fa06950cff547be39838e763615c7f28a
3
+ size 40754
MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebdad4b9cfe9cd22a3abadb5623bf7bb1f6eb2e408740245eb3f2044b0adc018
3
+ size 864
MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: macOS-14.2.1-arm64-arm-64bit Darwin Kernel Version 23.2.0: Wed Nov 15 21:53:34 PST 2023; root:xnu-10002.61.3~2/RELEASE_ARM64_T8103
2
+ - Python: 3.10.8
3
+ - Stable-Baselines3: 2.3.2
4
+ - PyTorch: 2.3.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.2
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCar-v0
16
+ type: MountainCar-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -200.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **MountainCar-v0**
25
+ This is a trained model of a **DQN** agent playing **MountainCar-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x298ec7880>", "_build": "<function DQNPolicy._build at 0x298ec7910>", "make_q_net": "<function DQNPolicy.make_q_net at 0x298ec79a0>", "forward": "<function DQNPolicy.forward at 0x298ec7a30>", "_predict": "<function DQNPolicy._predict at 0x298ec7ac0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x298ec7b50>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x298ec7be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x298ee9340>"}, "verbose": 2, "policy_kwargs": {}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721716908791064000, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAPFXAr/qCJm8H8QBv22MSLwylQq/+zwkvMbvDb+VmES8cn8Kv/CWJLxzExC/9KyIvAkaBL+thae8aCLyvpetq7ytTRO/lmAovOO+C79l8jq8U/cHv9L3zrtXXwm/7SyjvDQlHr+Y0aC8/dARvx+yprxSgwm/jy6rvJgsGL+b6p68lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAFMf+76az46820P9vuCcNLw+BAi/ri8lvGTdCr/76Ea8Fu0Hv4d+JbwLzgu/zQ6KvLi7/b48nJ28j2fnvlgen7wqrBC/k3ctvBnTCL9ZSDy8Y1kGv3xDz7vvRQS/Jo+avKceGb8IXKW8bJsMvyFFqLzeKQS/DIqivEM1E79dEKK8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_episode_num": 4992, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0BPXuARTS9edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPXtdAxBVudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPXsA3kxREdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPXrdWQwK0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaphfBvaUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPao6S1Vo6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaneBQN1AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPam29cry2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPamJFb3XadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPalpwjt5VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPalOfukULdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPakyckMTfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPakTQE6kqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaj1XeWOZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPajYZl4C7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPai8nNPgvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaifQKKHgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPah73PAwgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPagfuCwr2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPaf8VHnU2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdc89wFTvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdcVpKzzFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPda5f+jubdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdaScLBsRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdZksjFAFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdZFPSDywdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdYqG1x82dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdYODrZ8KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdXu3MINWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdXRG+bmVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdW0AtFrmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdWYOUdJbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdV6/qPfbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdVXmvGIbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdT7di2DydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPdTYEnssydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgNGEwnIAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgMfaHsTndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgLDZUT+OdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgKcd5prUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgJuuRs/IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgJPZZjhDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgI0ZWJaadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgIYWLxZudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgH5SFXaKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgHbqQiiZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgG+sYEW7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgGjCYTkAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgGICU5dXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgFk6Lfk4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgEI5YHPedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPgDmbLEDRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlZGKAJ9idX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlYfGMn7YdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlXCsOoYOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlWbobGWEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlVtwaR6odX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlVOTJQtSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlUzTF2mpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlUXHim2tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlT37DVH4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlTaCcwxndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlS88La24dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlShSLqD9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlSD7IkqudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlRgiNbTudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlQEZBLPEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPlPhAGB4EdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoP/JeVs2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoPX05EMLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoN7a7EpBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoNUXHim3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoMmnfl6rdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoMHB1s+FdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoLr5ZbIMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoLPt2LYPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoKwpvxYrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoKSxJNCadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoJ1q33HrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoJZ4fOlgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoI8p1A7gdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoIZQ53kgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoG9Htnf3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPoGZuyeI3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrGus90RwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrGHpKSPmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrErXlKbsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrEETxoZidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrDWbwz+FdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrC2+fywwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrCb2Dg62dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrB/y5I6KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrBgmZ3LWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrBC2MKkVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrAlv60pmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPrAJ9iMHbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPq/smfGuLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPq/JNj9XLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPq9tEXtSidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BPq9Jrcj7idWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15610, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQBx8egLZpGh4MMqFFXIHkaowDaW5jlIoROdEr1XWt8YFtEbleaJjrjQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRK3ULLb3VidWIu", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 10000, "batch_size": 64, "learning_starts": 1000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x298bfad40>", "add": "<function ReplayBuffer.add at 0x298bfadd0>", "sample": "<function ReplayBuffer.sample at 0x298bfae60>", "_get_samples": "<function ReplayBuffer._get_samples at 0x298bfaef0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x298bfaf80>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2988ec740>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 500, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0wMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lEthQwIMAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMcS9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjEwL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCNoPX2UfZQoaBhoNGgmjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgofZRoKk5oK05oLGgZaC1OaC5oMEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEVdlGhHfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVmAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3NDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMcS9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjEwL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "macOS-14.2.1-arm64-arm-64bit Darwin Kernel Version 23.2.0: Wed Nov 15 21:53:34 PST 2023; root:xnu-10002.61.3~2/RELEASE_ARM64_T8103", "Python": "3.10.8", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.1", "GPU Enabled": "False", "Numpy": "1.26.2", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
replay.mp4 ADDED
Binary file (146 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-23T14:44:17.999722"}