Image Segmentation
medical
fhofmann commited on
Commit
23c9f8a
·
verified ·
1 Parent(s): 20b09dd

model wo checkpoint

Browse files
nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/fold_all/debug.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "0.8639167944091766",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [235.0, 240.0, 240.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}, 'deep_supervision': True}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8902,
7
+ "current_epoch": "800",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe33e837130>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe33e8373d0>",
10
+ "dataloader_train.num_processes": "16",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe33e836fb0>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe33e837340>",
14
+ "dataloader_val.num_processes": "8",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'T1': 1, 'T2': 2, 'T3': 3, 'T4': 4, 'T5': 5, 'T6': 6, 'T7': 7, 'T8': 8, 'T9': 9, 'T10': 10, 'T11': 11, 'T12': 12, 'L1': 13, 'L2': 14, 'L3': 15, 'L4': 16, 'L5': 17, 'L6': 18, 'sacrum': 19, 'coccyx': 20, 'T13': 21}, 'numTraining': 1216, 'file_ending': '.nii.gz', 'dataset_name': 'VertebralBodies Thorax/Abdomen/Sacrum', 'reference': 'https://huggingface.co/datasets/fhofmann/VertebralBodiesCT-Labels', 'release': '2024-08-29', 'license': 'CC BY-SA 4.0', 'description': '1216 CT scans, with segmentations of the vertebral bodies in the thorax, abdomen, and sacrum. CT scans and initial labels derive from the VerSe (https://github.com/anjany/verse, license CC BY-SA 4.0) and TotalSegmentator (license CC BY 4.0 DEED) dataset. Files were processed, and labels were adapted as described in the README.md. A validation set is available separately.'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "enable_deep_supervision": "True",
20
+ "fold": "all",
21
+ "folder_with_segs_from_previous_stage": "None",
22
+ "gpu_name": "NVIDIA A100-SXM4-40GB",
23
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fe27970c0a0>",
24
+ "hostname": "srvdrai1",
25
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
26
+ "initial_lr": "0.01",
27
+ "is_cascaded": "False",
28
+ "is_ddp": "False",
29
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fe27970c250>",
30
+ "local_rank": "0",
31
+ "log_file": "/workspace/data/nnUNet_results/Dataset601_VertebralBodies/nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/fold_all/training_log_2024_8_30_07_58_08.txt",
32
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fe27970c100>",
33
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
34
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fe27a935090>",
35
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset601_VertebralBodies', 'plans_name': 'nnUNetResEncUNetMPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [239, 252, 252], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 48, 'patch_size': [256, 256], 'median_image_size_in_voxels': [240.0, 240.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 7, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [235.0, 240.0, 240.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'nnUNetPlannerResEncM', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 10076.0, 'mean': 251.18613451837237, 'median': 216.0, 'min': -2048.0, 'percentile_00_5': -158.0, 'percentile_99_5': 1100.0, 'std': 205.1041738973246}}}, 'configuration': '3d_fullres', 'fold': 'all', 'dataset_json': {'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'T1': 1, 'T2': 2, 'T3': 3, 'T4': 4, 'T5': 5, 'T6': 6, 'T7': 7, 'T8': 8, 'T9': 9, 'T10': 10, 'T11': 11, 'T12': 12, 'L1': 13, 'L2': 14, 'L3': 15, 'L4': 16, 'L5': 17, 'L6': 18, 'sacrum': 19, 'coccyx': 20, 'T13': 21}, 'numTraining': 1216, 'file_ending': '.nii.gz', 'dataset_name': 'VertebralBodies Thorax/Abdomen/Sacrum', 'reference': 'https://huggingface.co/datasets/fhofmann/VertebralBodiesCT-Labels', 'release': '2024-08-29', 'license': 'CC BY-SA 4.0', 'description': '1216 CT scans, with segmentations of the vertebral bodies in the thorax, abdomen, and sacrum. CT scans and initial labels derive from the VerSe (https://github.com/anjany/verse, license CC BY-SA 4.0) and TotalSegmentator (license CC BY 4.0 DEED) dataset. Files were processed, and labels were adapted as described in the README.md. A validation set is available separately.'}, 'unpack_dataset': False, 'device': device(type='cuda')}",
36
+ "network": "OptimizedModule",
37
+ "num_epochs": "1000",
38
+ "num_input_channels": "1",
39
+ "num_iterations_per_epoch": "250",
40
+ "num_val_iterations_per_epoch": "50",
41
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.0023598068186038313\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
42
+ "output_folder": "/workspace/data/nnUNet_results/Dataset601_VertebralBodies/nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/fold_all",
43
+ "output_folder_base": "/workspace/data/nnUNet_results/Dataset601_VertebralBodies/nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres",
44
+ "oversample_foreground_percent": "0.33",
45
+ "plans_manager": "{'dataset_name': 'Dataset601_VertebralBodies', 'plans_name': 'nnUNetResEncUNetMPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [239, 252, 252], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 48, 'patch_size': [256, 256], 'median_image_size_in_voxels': [240.0, 240.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 7, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [235.0, 240.0, 240.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'nnUNetPlannerResEncM', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 10076.0, 'mean': 251.18613451837237, 'median': 216.0, 'min': -2048.0, 'percentile_00_5': -158.0, 'percentile_99_5': 1100.0, 'std': 205.1041738973246}}}",
46
+ "preprocessed_dataset_folder": "/workspace/data2/nnUNet_preprocessed/Dataset601_VertebralBodies/nnUNetPlans_3d_fullres",
47
+ "preprocessed_dataset_folder_base": "/workspace/data2/nnUNet_preprocessed/Dataset601_VertebralBodies",
48
+ "save_every": "50",
49
+ "torch_version": "2.3.0+cu121",
50
+ "unpack_dataset": "False",
51
+ "was_initialized": "True",
52
+ "weight_decay": "3e-05"
53
+ }
nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/fold_all/logs/progress.png ADDED
nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/fold_all/logs/training_log_2024_8_29_15_59_41.txt ADDED
The diff for this file is too large to render. See raw diff
 
nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/fold_all/logs/training_log_2024_8_29_23_59_06.txt ADDED
The diff for this file is too large to render. See raw diff
 
nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/fold_all/logs/training_log_2024_8_30_07_58_08.txt ADDED
@@ -0,0 +1,1432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #######################################################################
3
+ Please cite the following paper when using nnU-Net:
4
+ Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
5
+ #######################################################################
6
+
7
+ 2024-08-30 07:58:11.563206: Using torch.compile...
8
+ 2024-08-30 07:58:18.089942: do_dummy_2d_data_aug: False
9
+
10
+ This is the configuration used by this training:
11
+ Configuration name: 3d_fullres
12
+ {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [235.0, 240.0, 240.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}, 'deep_supervision': True}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}
13
+
14
+ These are the global plan.json settings:
15
+ {'dataset_name': 'Dataset601_VertebralBodies', 'plans_name': 'nnUNetResEncUNetMPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [239, 252, 252], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'nnUNetPlannerResEncM', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 10076.0, 'mean': 251.18613451837237, 'median': 216.0, 'min': -2048.0, 'percentile_00_5': -158.0, 'percentile_99_5': 1100.0, 'std': 205.1041738973246}}}
16
+
17
+ 2024-08-30 07:58:21.674600: Unable to plot network architecture: nnUNet_compile is enabled!
18
+ 2024-08-30 07:58:22.131281:
19
+ 2024-08-30 07:58:22.132290: Epoch 800
20
+ 2024-08-30 07:58:22.133175: Current learning rate: 0.00235
21
+ 2024-08-30 08:03:45.428643: train_loss -0.8298
22
+ 2024-08-30 08:03:45.430047: val_loss -0.8349
23
+ 2024-08-30 08:03:45.431003: Pseudo dice [0.9243, 0.9449, 0.9335, 0.8995, 0.8846, 0.9162, 0.9295, 0.9348, 0.9324, 0.913, 0.8889, 0.8969, 0.9247, 0.9191, 0.9173, 0.8506, 0.7589, 0.0, 0.9421, nan, 0.0]
24
+ 2024-08-30 08:03:45.431701: Epoch time: 323.3 s
25
+ 2024-08-30 08:03:46.966835:
26
+ 2024-08-30 08:03:46.967671: Epoch 801
27
+ 2024-08-30 08:03:46.968291: Current learning rate: 0.00234
28
+ 2024-08-30 08:04:38.504457: train_loss -0.8275
29
+ 2024-08-30 08:04:38.505691: val_loss -0.841
30
+ 2024-08-30 08:04:38.506451: Pseudo dice [0.898, 0.9391, 0.937, 0.8957, 0.8836, 0.8873, 0.8928, 0.9155, 0.9086, 0.9039, 0.8952, 0.9038, 0.9531, 0.9499, 0.9427, 0.9347, 0.8904, 0.0, 0.9463, nan, 0.0]
31
+ 2024-08-30 08:04:38.507064: Epoch time: 51.54 s
32
+ 2024-08-30 08:04:39.909204:
33
+ 2024-08-30 08:04:39.909985: Epoch 802
34
+ 2024-08-30 08:04:39.910569: Current learning rate: 0.00233
35
+ 2024-08-30 08:05:32.788320: train_loss -0.8287
36
+ 2024-08-30 08:05:32.791261: val_loss -0.8546
37
+ 2024-08-30 08:05:32.792677: Pseudo dice [0.9208, 0.946, 0.9223, 0.9167, 0.9083, 0.9257, 0.9309, 0.9319, 0.9459, 0.9684, 0.9716, 0.9611, 0.9578, 0.9272, 0.9065, 0.8822, 0.8567, 0.0, 0.9434, nan, nan]
38
+ 2024-08-30 08:05:32.793562: Epoch time: 52.88 s
39
+ 2024-08-30 08:05:34.988766:
40
+ 2024-08-30 08:05:34.989611: Epoch 803
41
+ 2024-08-30 08:05:34.990308: Current learning rate: 0.00232
42
+ 2024-08-30 08:06:26.532500: train_loss -0.8275
43
+ 2024-08-30 08:06:26.533911: val_loss -0.8135
44
+ 2024-08-30 08:06:26.535242: Pseudo dice [0.8438, 0.8301, 0.7534, 0.7937, 0.832, 0.7874, 0.7203, 0.7308, 0.7882, 0.8375, 0.8646, 0.8654, 0.8509, 0.8684, 0.8871, 0.9275, 0.9166, 0.0, 0.9492, nan, nan]
45
+ 2024-08-30 08:06:26.536349: Epoch time: 51.55 s
46
+ 2024-08-30 08:06:28.116220:
47
+ 2024-08-30 08:06:28.116964: Epoch 804
48
+ 2024-08-30 08:06:28.117596: Current learning rate: 0.00231
49
+ 2024-08-30 08:07:22.739134: train_loss -0.826
50
+ 2024-08-30 08:07:22.741840: val_loss -0.8538
51
+ 2024-08-30 08:07:22.742763: Pseudo dice [0.9266, 0.9505, 0.9481, 0.9558, 0.9594, 0.9632, 0.9063, 0.9122, 0.9563, 0.9658, 0.9565, 0.9547, 0.9174, 0.8873, 0.9158, 0.9345, 0.8662, 0.0, 0.9411, nan, nan]
52
+ 2024-08-30 08:07:22.743593: Epoch time: 54.63 s
53
+ 2024-08-30 08:07:24.305591:
54
+ 2024-08-30 08:07:24.306453: Epoch 805
55
+ 2024-08-30 08:07:24.307409: Current learning rate: 0.0023
56
+ 2024-08-30 08:08:16.513894: train_loss -0.8196
57
+ 2024-08-30 08:08:16.515238: val_loss -0.8443
58
+ 2024-08-30 08:08:16.516107: Pseudo dice [0.9205, 0.9388, 0.943, 0.9425, 0.9243, 0.9212, 0.9322, 0.9344, 0.9331, 0.9398, 0.9214, 0.9125, 0.9076, 0.8794, 0.8772, 0.8927, 0.843, 0.0, 0.9436, nan, nan]
59
+ 2024-08-30 08:08:16.516857: Epoch time: 52.21 s
60
+ 2024-08-30 08:08:17.939694:
61
+ 2024-08-30 08:08:17.940573: Epoch 806
62
+ 2024-08-30 08:08:17.941231: Current learning rate: 0.00229
63
+ 2024-08-30 08:09:10.630731: train_loss -0.8309
64
+ 2024-08-30 08:09:10.632896: val_loss -0.8427
65
+ 2024-08-30 08:09:10.634222: Pseudo dice [0.921, 0.9139, 0.8767, 0.8661, 0.8639, 0.8846, 0.8672, 0.8613, 0.8769, 0.8845, 0.9237, 0.95, 0.9552, 0.9689, 0.9725, 0.9647, 0.9313, 0.0, 0.935, nan, nan]
66
+ 2024-08-30 08:09:10.635642: Epoch time: 52.69 s
67
+ 2024-08-30 08:09:12.215455:
68
+ 2024-08-30 08:09:12.216362: Epoch 807
69
+ 2024-08-30 08:09:12.216984: Current learning rate: 0.00228
70
+ 2024-08-30 08:10:03.502030: train_loss -0.8369
71
+ 2024-08-30 08:10:03.503799: val_loss -0.8569
72
+ 2024-08-30 08:10:03.504809: Pseudo dice [0.919, 0.9469, 0.933, 0.9408, 0.9519, 0.9526, 0.9455, 0.9432, 0.9465, 0.9597, 0.9574, 0.9595, 0.963, 0.952, 0.9375, 0.9212, 0.8982, 0.0, 0.9518, nan, nan]
73
+ 2024-08-30 08:10:03.505649: Epoch time: 51.29 s
74
+ 2024-08-30 08:10:04.943223:
75
+ 2024-08-30 08:10:04.944008: Epoch 808
76
+ 2024-08-30 08:10:04.944632: Current learning rate: 0.00226
77
+ 2024-08-30 08:10:55.502361: train_loss -0.8244
78
+ 2024-08-30 08:10:55.504170: val_loss -0.8443
79
+ 2024-08-30 08:10:55.504948: Pseudo dice [0.9041, 0.914, 0.9259, 0.9342, 0.9182, 0.9123, 0.9433, 0.9522, 0.9473, 0.9455, 0.9306, 0.9368, 0.9317, 0.9557, 0.9111, 0.8272, 0.7577, 0.0, 0.945, nan, 0.0]
80
+ 2024-08-30 08:10:55.505560: Epoch time: 50.56 s
81
+ 2024-08-30 08:10:56.940577:
82
+ 2024-08-30 08:10:56.941448: Epoch 809
83
+ 2024-08-30 08:10:56.942101: Current learning rate: 0.00225
84
+ 2024-08-30 08:11:49.197581: train_loss -0.8294
85
+ 2024-08-30 08:11:49.199519: val_loss -0.8529
86
+ 2024-08-30 08:11:49.201134: Pseudo dice [0.9261, 0.9319, 0.933, 0.9313, 0.9415, 0.9552, 0.9307, 0.8648, 0.8206, 0.8718, 0.9199, 0.9415, 0.9534, 0.9488, 0.9468, 0.9375, 0.9104, 0.0, 0.9443, nan, 0.0]
87
+ 2024-08-30 08:11:49.203180: Epoch time: 52.26 s
88
+ 2024-08-30 08:11:50.628483:
89
+ 2024-08-30 08:11:50.629328: Epoch 810
90
+ 2024-08-30 08:11:50.629950: Current learning rate: 0.00224
91
+ 2024-08-30 08:12:44.200685: train_loss -0.8284
92
+ 2024-08-30 08:12:44.202734: val_loss -0.8515
93
+ 2024-08-30 08:12:44.203762: Pseudo dice [0.9285, 0.9179, 0.9271, 0.9394, 0.8995, 0.9022, 0.9364, 0.912, 0.8835, 0.9053, 0.9436, 0.9638, 0.9683, 0.9266, 0.8912, 0.9094, 0.8941, 0.0, 0.9413, nan, nan]
94
+ 2024-08-30 08:12:44.204494: Epoch time: 53.58 s
95
+ 2024-08-30 08:12:45.877465:
96
+ 2024-08-30 08:12:45.878678: Epoch 811
97
+ 2024-08-30 08:12:45.879470: Current learning rate: 0.00223
98
+ 2024-08-30 08:13:35.151080: train_loss -0.818
99
+ 2024-08-30 08:13:35.152261: val_loss -0.8408
100
+ 2024-08-30 08:13:35.153176: Pseudo dice [0.9395, 0.924, 0.8925, 0.8974, 0.8862, 0.8433, 0.8485, 0.8944, 0.8938, 0.8996, 0.9513, 0.9481, 0.9603, 0.9192, 0.8756, 0.8428, 0.8499, nan, 0.945, nan, nan]
101
+ 2024-08-30 08:13:35.153873: Epoch time: 49.28 s
102
+ 2024-08-30 08:13:36.626055:
103
+ 2024-08-30 08:13:36.626868: Epoch 812
104
+ 2024-08-30 08:13:36.627525: Current learning rate: 0.00222
105
+ 2024-08-30 08:14:25.278524: train_loss -0.8262
106
+ 2024-08-30 08:14:25.281066: val_loss -0.841
107
+ 2024-08-30 08:14:25.282288: Pseudo dice [0.9162, 0.9452, 0.956, 0.9518, 0.9345, 0.912, 0.9154, 0.9162, 0.8872, 0.874, 0.8917, 0.8981, 0.9605, 0.9475, 0.9276, 0.877, 0.7966, 0.0, 0.942, nan, 0.0]
108
+ 2024-08-30 08:14:25.283130: Epoch time: 48.66 s
109
+ 2024-08-30 08:14:26.765371:
110
+ 2024-08-30 08:14:26.766247: Epoch 813
111
+ 2024-08-30 08:14:26.766987: Current learning rate: 0.00221
112
+ 2024-08-30 08:15:17.590965: train_loss -0.8314
113
+ 2024-08-30 08:15:17.593155: val_loss -0.8355
114
+ 2024-08-30 08:15:17.594711: Pseudo dice [0.9184, 0.9248, 0.9114, 0.9097, 0.8947, 0.8811, 0.8787, 0.8975, 0.8757, 0.881, 0.8705, 0.9022, 0.8961, 0.8504, 0.8486, 0.8488, 0.8674, 0.0, 0.9501, nan, nan]
115
+ 2024-08-30 08:15:17.596956: Epoch time: 50.83 s
116
+ 2024-08-30 08:15:19.065178:
117
+ 2024-08-30 08:15:19.066002: Epoch 814
118
+ 2024-08-30 08:15:19.066709: Current learning rate: 0.0022
119
+ 2024-08-30 08:16:10.943189: train_loss -0.8306
120
+ 2024-08-30 08:16:10.955420: val_loss -0.8514
121
+ 2024-08-30 08:16:10.956509: Pseudo dice [0.9252, 0.9536, 0.952, 0.9485, 0.9561, 0.9566, 0.9676, 0.9678, 0.9677, 0.9643, 0.95, 0.9457, 0.9073, 0.9278, 0.9319, 0.905, 0.8595, 0.0, 0.9426, nan, 0.0]
122
+ 2024-08-30 08:16:10.957301: Epoch time: 51.88 s
123
+ 2024-08-30 08:16:13.075094:
124
+ 2024-08-30 08:16:13.075996: Epoch 815
125
+ 2024-08-30 08:16:13.076652: Current learning rate: 0.00219
126
+ 2024-08-30 08:17:06.350408: train_loss -0.8157
127
+ 2024-08-30 08:17:06.351511: val_loss -0.842
128
+ 2024-08-30 08:17:06.352343: Pseudo dice [0.9262, 0.9019, 0.8707, 0.8943, 0.9377, 0.9371, 0.9258, 0.9275, 0.9172, 0.9048, 0.9104, 0.9174, 0.9221, 0.9076, 0.8824, 0.8531, 0.824, 0.0, 0.9371, nan, nan]
129
+ 2024-08-30 08:17:06.353109: Epoch time: 53.28 s
130
+ 2024-08-30 08:17:07.755994:
131
+ 2024-08-30 08:17:07.757254: Epoch 816
132
+ 2024-08-30 08:17:07.757989: Current learning rate: 0.00218
133
+ 2024-08-30 08:17:58.611602: train_loss -0.8396
134
+ 2024-08-30 08:17:58.613509: val_loss -0.8431
135
+ 2024-08-30 08:17:58.614527: Pseudo dice [0.9309, 0.9434, 0.924, 0.9131, 0.9369, 0.9263, 0.9033, 0.9149, 0.9345, 0.9132, 0.864, 0.8876, 0.9373, 0.9518, 0.9265, 0.8795, 0.8378, 0.0, 0.9452, nan, nan]
136
+ 2024-08-30 08:17:58.615318: Epoch time: 50.86 s
137
+ 2024-08-30 08:18:00.178677:
138
+ 2024-08-30 08:18:00.179557: Epoch 817
139
+ 2024-08-30 08:18:00.180188: Current learning rate: 0.00217
140
+ 2024-08-30 08:18:54.053931: train_loss -0.8233
141
+ 2024-08-30 08:18:54.055542: val_loss -0.8204
142
+ 2024-08-30 08:18:54.056728: Pseudo dice [0.8693, 0.8951, 0.8895, 0.8801, 0.8989, 0.9228, 0.9474, 0.9307, 0.9131, 0.9114, 0.9073, 0.9106, 0.8527, 0.7768, 0.7465, 0.7157, 0.7106, 0.0, 0.9297, nan, nan]
143
+ 2024-08-30 08:18:54.057687: Epoch time: 53.88 s
144
+ 2024-08-30 08:18:55.619385:
145
+ 2024-08-30 08:18:55.620272: Epoch 818
146
+ 2024-08-30 08:18:55.620930: Current learning rate: 0.00216
147
+ 2024-08-30 08:19:46.511590: train_loss -0.8308
148
+ 2024-08-30 08:19:46.513474: val_loss -0.8539
149
+ 2024-08-30 08:19:46.514338: Pseudo dice [0.9501, 0.9587, 0.9606, 0.9649, 0.9644, 0.9682, 0.958, 0.9286, 0.8767, 0.8543, 0.8755, 0.8759, 0.9143, 0.8994, 0.8829, 0.9086, 0.9096, 0.0, 0.9338, nan, 0.0]
150
+ 2024-08-30 08:19:46.515176: Epoch time: 50.9 s
151
+ 2024-08-30 08:19:48.165145:
152
+ 2024-08-30 08:19:48.166027: Epoch 819
153
+ 2024-08-30 08:19:48.166734: Current learning rate: 0.00215
154
+ 2024-08-30 08:20:38.473231: train_loss -0.8336
155
+ 2024-08-30 08:20:38.475305: val_loss -0.8618
156
+ 2024-08-30 08:20:38.476350: Pseudo dice [0.9202, 0.9409, 0.9411, 0.9425, 0.9466, 0.9563, 0.9615, 0.9633, 0.9232, 0.896, 0.9343, 0.956, 0.9608, 0.969, 0.9541, 0.9523, 0.9448, nan, 0.949, nan, nan]
157
+ 2024-08-30 08:20:38.477642: Epoch time: 50.31 s
158
+ 2024-08-30 08:20:40.186954:
159
+ 2024-08-30 08:20:40.187847: Epoch 820
160
+ 2024-08-30 08:20:40.188530: Current learning rate: 0.00214
161
+ 2024-08-30 08:21:33.444569: train_loss -0.8376
162
+ 2024-08-30 08:21:33.446877: val_loss -0.8386
163
+ 2024-08-30 08:21:33.448053: Pseudo dice [0.9123, 0.9334, 0.9372, 0.9498, 0.9616, 0.9515, 0.9048, 0.8704, 0.901, 0.9199, 0.9388, 0.8919, 0.9033, 0.9588, 0.8961, 0.8513, 0.8759, 0.0, 0.9404, nan, nan]
164
+ 2024-08-30 08:21:33.448708: Epoch time: 53.26 s
165
+ 2024-08-30 08:21:35.020370:
166
+ 2024-08-30 08:21:35.021193: Epoch 821
167
+ 2024-08-30 08:21:35.021801: Current learning rate: 0.00213
168
+ 2024-08-30 08:22:28.024297: train_loss -0.8313
169
+ 2024-08-30 08:22:28.025396: val_loss -0.835
170
+ 2024-08-30 08:22:28.026192: Pseudo dice [0.9202, 0.9456, 0.9307, 0.928, 0.9179, 0.9048, 0.9096, 0.9235, 0.9275, 0.94, 0.9337, 0.9078, 0.8945, 0.8613, 0.8258, 0.7934, 0.7485, 0.0, 0.943, nan, nan]
171
+ 2024-08-30 08:22:28.027001: Epoch time: 53.01 s
172
+ 2024-08-30 08:22:29.338894:
173
+ 2024-08-30 08:22:29.339920: Epoch 822
174
+ 2024-08-30 08:22:29.340533: Current learning rate: 0.00212
175
+ 2024-08-30 08:23:23.282223: train_loss -0.8291
176
+ 2024-08-30 08:23:23.285022: val_loss -0.8318
177
+ 2024-08-30 08:23:23.285893: Pseudo dice [0.9273, 0.9355, 0.9379, 0.931, 0.9015, 0.8874, 0.8629, 0.8341, 0.7981, 0.8074, 0.8294, 0.8404, 0.8596, 0.8865, 0.9295, 0.9218, 0.8733, 0.0, 0.9337, nan, nan]
178
+ 2024-08-30 08:23:23.286742: Epoch time: 53.95 s
179
+ 2024-08-30 08:23:24.822444:
180
+ 2024-08-30 08:23:24.823317: Epoch 823
181
+ 2024-08-30 08:23:24.823978: Current learning rate: 0.0021
182
+ 2024-08-30 08:24:16.636767: train_loss -0.8283
183
+ 2024-08-30 08:24:16.637908: val_loss -0.8405
184
+ 2024-08-30 08:24:16.638814: Pseudo dice [0.8966, 0.869, 0.819, 0.8487, 0.843, 0.8508, 0.8709, 0.8922, 0.9166, 0.9319, 0.9118, 0.8867, 0.9029, 0.9309, 0.9442, 0.9578, 0.9509, nan, 0.9552, nan, nan]
185
+ 2024-08-30 08:24:16.639580: Epoch time: 51.82 s
186
+ 2024-08-30 08:24:17.981040:
187
+ 2024-08-30 08:24:17.981936: Epoch 824
188
+ 2024-08-30 08:24:17.982702: Current learning rate: 0.00209
189
+ 2024-08-30 08:25:09.459312: train_loss -0.8332
190
+ 2024-08-30 08:25:09.461983: val_loss -0.847
191
+ 2024-08-30 08:25:09.463172: Pseudo dice [0.9129, 0.9362, 0.9282, 0.9401, 0.9414, 0.9529, 0.9507, 0.9306, 0.9334, 0.9195, 0.9052, 0.885, 0.9312, 0.9253, 0.9305, 0.9056, 0.8777, 0.0, 0.9459, nan, 0.0]
192
+ 2024-08-30 08:25:09.464164: Epoch time: 51.48 s
193
+ 2024-08-30 08:25:11.123589:
194
+ 2024-08-30 08:25:11.124481: Epoch 825
195
+ 2024-08-30 08:25:11.125131: Current learning rate: 0.00208
196
+ 2024-08-30 08:26:03.669369: train_loss -0.8402
197
+ 2024-08-30 08:26:03.671208: val_loss -0.8566
198
+ 2024-08-30 08:26:03.672660: Pseudo dice [0.9124, 0.9442, 0.942, 0.952, 0.9593, 0.9669, 0.9522, 0.9513, 0.9681, 0.9742, 0.9675, 0.9643, 0.9618, 0.9555, 0.9259, 0.9126, 0.8724, 0.0, 0.9548, nan, nan]
199
+ 2024-08-30 08:26:03.673769: Epoch time: 52.55 s
200
+ 2024-08-30 08:26:05.188530:
201
+ 2024-08-30 08:26:05.189483: Epoch 826
202
+ 2024-08-30 08:26:05.190189: Current learning rate: 0.00207
203
+ 2024-08-30 08:26:56.577958: train_loss -0.8289
204
+ 2024-08-30 08:26:56.580436: val_loss -0.8455
205
+ 2024-08-30 08:26:56.581439: Pseudo dice [0.8892, 0.9066, 0.9185, 0.953, 0.9587, 0.9408, 0.914, 0.8965, 0.9056, 0.9023, 0.8851, 0.9108, 0.9464, 0.908, 0.9074, 0.8988, 0.8317, 0.0, 0.9439, nan, nan]
206
+ 2024-08-30 08:26:56.582162: Epoch time: 51.39 s
207
+ 2024-08-30 08:26:57.894692:
208
+ 2024-08-30 08:26:57.895434: Epoch 827
209
+ 2024-08-30 08:26:57.896052: Current learning rate: 0.00206
210
+ 2024-08-30 08:27:47.155619: train_loss -0.8429
211
+ 2024-08-30 08:27:47.157499: val_loss -0.8626
212
+ 2024-08-30 08:27:47.158466: Pseudo dice [0.9454, 0.9514, 0.9409, 0.9206, 0.913, 0.9173, 0.9452, 0.9572, 0.9547, 0.9567, 0.9601, 0.9514, 0.9524, 0.9657, 0.967, 0.9685, 0.9502, nan, 0.947, nan, nan]
213
+ 2024-08-30 08:27:47.159390: Epoch time: 49.26 s
214
+ 2024-08-30 08:27:47.160301: Yayy! New best EMA pseudo Dice: 0.8698
215
+ 2024-08-30 08:27:52.292960:
216
+ 2024-08-30 08:27:52.293909: Epoch 828
217
+ 2024-08-30 08:27:52.294642: Current learning rate: 0.00205
218
+ 2024-08-30 08:28:43.239846: train_loss -0.8371
219
+ 2024-08-30 08:28:43.241592: val_loss -0.8352
220
+ 2024-08-30 08:28:43.243298: Pseudo dice [0.9016, 0.9249, 0.9414, 0.9493, 0.9637, 0.9653, 0.963, 0.9665, 0.9624, 0.9481, 0.9269, 0.9263, 0.8967, 0.8463, 0.7995, 0.7497, 0.7564, 0.0, 0.9564, nan, 0.0]
221
+ 2024-08-30 08:28:43.244061: Epoch time: 50.95 s
222
+ 2024-08-30 08:28:44.624213:
223
+ 2024-08-30 08:28:44.625808: Epoch 829
224
+ 2024-08-30 08:28:44.626519: Current learning rate: 0.00204
225
+ 2024-08-30 08:29:37.756772: train_loss -0.8299
226
+ 2024-08-30 08:29:37.757998: val_loss -0.8568
227
+ 2024-08-30 08:29:37.758874: Pseudo dice [0.9323, 0.9466, 0.942, 0.9373, 0.9468, 0.9594, 0.966, 0.9621, 0.9544, 0.9604, 0.9596, 0.9597, 0.9711, 0.9682, 0.9462, 0.8969, 0.8514, 0.0, 0.9407, nan, nan]
228
+ 2024-08-30 08:29:37.759763: Epoch time: 53.14 s
229
+ 2024-08-30 08:29:39.056917:
230
+ 2024-08-30 08:29:39.057681: Epoch 830
231
+ 2024-08-30 08:29:39.058367: Current learning rate: 0.00203
232
+ 2024-08-30 08:30:35.667782: train_loss -0.8141
233
+ 2024-08-30 08:30:35.669878: val_loss -0.8573
234
+ 2024-08-30 08:30:35.670662: Pseudo dice [0.9336, 0.9498, 0.9528, 0.9497, 0.9628, 0.9605, 0.9664, 0.9729, 0.9727, 0.9722, 0.9661, 0.9445, 0.9273, 0.9296, 0.9067, 0.8506, 0.8598, 0.0, 0.9463, nan, nan]
235
+ 2024-08-30 08:30:35.671288: Epoch time: 56.61 s
236
+ 2024-08-30 08:30:35.671895: Yayy! New best EMA pseudo Dice: 0.8699
237
+ 2024-08-30 08:30:40.406667:
238
+ 2024-08-30 08:30:40.407565: Epoch 831
239
+ 2024-08-30 08:30:40.408188: Current learning rate: 0.00202
240
+ 2024-08-30 08:31:33.459675: train_loss -0.8337
241
+ 2024-08-30 08:31:33.460820: val_loss -0.8456
242
+ 2024-08-30 08:31:33.461634: Pseudo dice [0.9263, 0.9389, 0.9259, 0.9389, 0.9516, 0.9527, 0.9041, 0.8772, 0.9082, 0.9303, 0.9191, 0.9362, 0.9529, 0.9466, 0.9279, 0.8727, 0.8546, 0.0, 0.9462, nan, nan]
243
+ 2024-08-30 08:31:33.462340: Epoch time: 53.06 s
244
+ 2024-08-30 08:31:33.463093: Yayy! New best EMA pseudo Dice: 0.8703
245
+ 2024-08-30 08:31:37.837598:
246
+ 2024-08-30 08:31:37.838884: Epoch 832
247
+ 2024-08-30 08:31:37.839515: Current learning rate: 0.00201
248
+ 2024-08-30 08:32:29.919479: train_loss -0.8371
249
+ 2024-08-30 08:32:29.921590: val_loss -0.8504
250
+ 2024-08-30 08:32:29.922781: Pseudo dice [0.9288, 0.9495, 0.9564, 0.958, 0.9473, 0.9519, 0.9621, 0.9535, 0.9327, 0.9095, 0.8838, 0.8829, 0.9102, 0.8988, 0.8911, 0.9062, 0.9134, nan, 0.945, nan, nan]
251
+ 2024-08-30 08:32:29.923557: Epoch time: 52.08 s
252
+ 2024-08-30 08:32:29.924380: Yayy! New best EMA pseudo Dice: 0.876
253
+ 2024-08-30 08:32:34.433934:
254
+ 2024-08-30 08:32:34.434817: Epoch 833
255
+ 2024-08-30 08:32:34.435482: Current learning rate: 0.002
256
+ 2024-08-30 08:33:25.896383: train_loss -0.8359
257
+ 2024-08-30 08:33:25.898402: val_loss -0.8484
258
+ 2024-08-30 08:33:25.899250: Pseudo dice [0.9355, 0.9488, 0.9456, 0.9063, 0.908, 0.9442, 0.9221, 0.9163, 0.9263, 0.9353, 0.9369, 0.9373, 0.9159, 0.9038, 0.9198, 0.8978, 0.9145, 0.0, 0.9548, nan, nan]
259
+ 2024-08-30 08:33:25.900124: Epoch time: 51.47 s
260
+ 2024-08-30 08:33:25.900837: Yayy! New best EMA pseudo Dice: 0.8761
261
+ 2024-08-30 08:33:30.282899:
262
+ 2024-08-30 08:33:30.283942: Epoch 834
263
+ 2024-08-30 08:33:30.284630: Current learning rate: 0.00199
264
+ 2024-08-30 08:34:22.623142: train_loss -0.8318
265
+ 2024-08-30 08:34:22.624439: val_loss -0.85
266
+ 2024-08-30 08:34:22.625240: Pseudo dice [0.9323, 0.9508, 0.9449, 0.9214, 0.8995, 0.8596, 0.8281, 0.8324, 0.8634, 0.909, 0.9332, 0.9516, 0.9706, 0.9711, 0.9661, 0.94, 0.9221, 0.0, 0.9507, nan, nan]
267
+ 2024-08-30 08:34:22.626162: Epoch time: 52.34 s
268
+ 2024-08-30 08:34:23.944872:
269
+ 2024-08-30 08:34:23.945734: Epoch 835
270
+ 2024-08-30 08:34:23.946381: Current learning rate: 0.00198
271
+ 2024-08-30 08:35:17.867495: train_loss -0.8387
272
+ 2024-08-30 08:35:17.870377: val_loss -0.8609
273
+ 2024-08-30 08:35:17.871281: Pseudo dice [0.9046, 0.9497, 0.9472, 0.9573, 0.9583, 0.9423, 0.9298, 0.9285, 0.953, 0.9676, 0.9662, 0.9654, 0.9695, 0.9583, 0.961, 0.9583, 0.902, 0.0, 0.9462, nan, nan]
274
+ 2024-08-30 08:35:17.872017: Epoch time: 53.93 s
275
+ 2024-08-30 08:35:17.872632: Yayy! New best EMA pseudo Dice: 0.8778
276
+ 2024-08-30 08:35:22.239060:
277
+ 2024-08-30 08:35:22.239956: Epoch 836
278
+ 2024-08-30 08:35:22.240781: Current learning rate: 0.00196
279
+ 2024-08-30 08:36:15.614010: train_loss -0.8287
280
+ 2024-08-30 08:36:15.616992: val_loss -0.8443
281
+ 2024-08-30 08:36:15.617964: Pseudo dice [0.9094, 0.9418, 0.9388, 0.9396, 0.9294, 0.9082, 0.9189, 0.9234, 0.877, 0.8867, 0.8986, 0.8993, 0.9003, 0.8602, 0.8569, 0.9135, 0.8982, 0.0, 0.9551, nan, nan]
282
+ 2024-08-30 08:36:15.619199: Epoch time: 53.38 s
283
+ 2024-08-30 08:36:16.960143:
284
+ 2024-08-30 08:36:16.961052: Epoch 837
285
+ 2024-08-30 08:36:16.961776: Current learning rate: 0.00195
286
+ 2024-08-30 08:37:07.388469: train_loss -0.8272
287
+ 2024-08-30 08:37:07.390649: val_loss -0.8489
288
+ 2024-08-30 08:37:07.391516: Pseudo dice [0.9166, 0.9045, 0.8891, 0.8701, 0.8837, 0.8848, 0.9035, 0.905, 0.9083, 0.915, 0.93, 0.9457, 0.9486, 0.9387, 0.9536, 0.9627, 0.9111, 0.0, 0.9435, nan, nan]
289
+ 2024-08-30 08:37:07.392443: Epoch time: 50.43 s
290
+ 2024-08-30 08:37:08.861180:
291
+ 2024-08-30 08:37:08.862068: Epoch 838
292
+ 2024-08-30 08:37:08.862830: Current learning rate: 0.00194
293
+ 2024-08-30 08:38:05.148122: train_loss -0.8258
294
+ 2024-08-30 08:38:05.150485: val_loss -0.8404
295
+ 2024-08-30 08:38:05.151386: Pseudo dice [0.8883, 0.8898, 0.9005, 0.8151, 0.8185, 0.8683, 0.8654, 0.8936, 0.9216, 0.9188, 0.9192, 0.9373, 0.958, 0.9664, 0.9683, 0.9513, 0.9398, 0.0, 0.9475, nan, nan]
296
+ 2024-08-30 08:38:05.152148: Epoch time: 56.29 s
297
+ 2024-08-30 08:38:06.483434:
298
+ 2024-08-30 08:38:06.484345: Epoch 839
299
+ 2024-08-30 08:38:06.485116: Current learning rate: 0.00193
300
+ 2024-08-30 08:38:57.670839: train_loss -0.8387
301
+ 2024-08-30 08:38:57.673256: val_loss -0.8605
302
+ 2024-08-30 08:38:57.674401: Pseudo dice [0.9394, 0.9507, 0.9524, 0.9487, 0.954, 0.9456, 0.9253, 0.9307, 0.9418, 0.9422, 0.9399, 0.9486, 0.9598, 0.9701, 0.9737, 0.9696, 0.933, nan, 0.9466, nan, 0.0]
303
+ 2024-08-30 08:38:57.675169: Epoch time: 51.19 s
304
+ 2024-08-30 08:38:59.269151:
305
+ 2024-08-30 08:38:59.270121: Epoch 840
306
+ 2024-08-30 08:38:59.270879: Current learning rate: 0.00192
307
+ 2024-08-30 08:39:53.401448: train_loss -0.841
308
+ 2024-08-30 08:39:53.402682: val_loss -0.8495
309
+ 2024-08-30 08:39:53.403647: Pseudo dice [0.9174, 0.9366, 0.9184, 0.9149, 0.9108, 0.9191, 0.9439, 0.9464, 0.9191, 0.9199, 0.9207, 0.9107, 0.9452, 0.9343, 0.9256, 0.9306, 0.924, 0.0, 0.9462, nan, 0.0]
310
+ 2024-08-30 08:39:53.404493: Epoch time: 54.14 s
311
+ 2024-08-30 08:39:54.918965:
312
+ 2024-08-30 08:39:54.919803: Epoch 841
313
+ 2024-08-30 08:39:54.920514: Current learning rate: 0.00191
314
+ 2024-08-30 08:40:47.035358: train_loss -0.8342
315
+ 2024-08-30 08:40:47.037726: val_loss -0.8393
316
+ 2024-08-30 08:40:47.038593: Pseudo dice [0.9156, 0.9198, 0.9055, 0.9006, 0.8871, 0.8714, 0.8915, 0.8892, 0.8902, 0.8827, 0.8617, 0.8779, 0.9057, 0.8994, 0.8778, 0.8781, 0.8957, 0.0, 0.9567, nan, nan]
317
+ 2024-08-30 08:40:47.039367: Epoch time: 52.12 s
318
+ 2024-08-30 08:40:48.478051:
319
+ 2024-08-30 08:40:48.478997: Epoch 842
320
+ 2024-08-30 08:40:48.479679: Current learning rate: 0.0019
321
+ 2024-08-30 08:41:39.741175: train_loss -0.8354
322
+ 2024-08-30 08:41:39.742464: val_loss -0.8438
323
+ 2024-08-30 08:41:39.743416: Pseudo dice [0.9415, 0.9181, 0.883, 0.8168, 0.8267, 0.9008, 0.9337, 0.9525, 0.9629, 0.9413, 0.925, 0.9168, 0.886, 0.8656, 0.8794, 0.9152, 0.9164, 0.0, 0.9501, nan, 0.0]
324
+ 2024-08-30 08:41:39.744118: Epoch time: 51.27 s
325
+ 2024-08-30 08:41:41.238216:
326
+ 2024-08-30 08:41:41.239219: Epoch 843
327
+ 2024-08-30 08:41:41.239991: Current learning rate: 0.00189
328
+ 2024-08-30 08:42:34.509820: train_loss -0.8206
329
+ 2024-08-30 08:42:34.511800: val_loss -0.8529
330
+ 2024-08-30 08:42:34.512738: Pseudo dice [0.9251, 0.9411, 0.947, 0.9551, 0.9312, 0.9193, 0.9308, 0.9373, 0.9253, 0.9274, 0.9375, 0.9481, 0.9566, 0.9615, 0.9748, 0.9434, 0.826, 0.0, 0.9267, nan, nan]
331
+ 2024-08-30 08:42:34.513470: Epoch time: 53.27 s
332
+ 2024-08-30 08:42:35.918376:
333
+ 2024-08-30 08:42:35.919334: Epoch 844
334
+ 2024-08-30 08:42:35.920022: Current learning rate: 0.00188
335
+ 2024-08-30 08:43:29.541205: train_loss -0.8317
336
+ 2024-08-30 08:43:29.542472: val_loss -0.8121
337
+ 2024-08-30 08:43:29.543409: Pseudo dice [0.8903, 0.9135, 0.8928, 0.8693, 0.854, 0.8603, 0.8552, 0.8442, 0.8344, 0.8207, 0.8267, 0.8474, 0.9029, 0.9041, 0.8716, 0.8192, 0.7569, 0.0, 0.9575, nan, 0.0]
338
+ 2024-08-30 08:43:29.544298: Epoch time: 53.63 s
339
+ 2024-08-30 08:43:30.901514:
340
+ 2024-08-30 08:43:30.902413: Epoch 845
341
+ 2024-08-30 08:43:30.903183: Current learning rate: 0.00187
342
+ 2024-08-30 08:44:23.643970: train_loss -0.8304
343
+ 2024-08-30 08:44:23.645729: val_loss -0.8566
344
+ 2024-08-30 08:44:23.646530: Pseudo dice [0.9207, 0.9391, 0.8981, 0.8785, 0.902, 0.893, 0.891, 0.9151, 0.939, 0.9532, 0.9421, 0.921, 0.9327, 0.9647, 0.9618, 0.9327, 0.8771, 0.0, 0.936, nan, nan]
345
+ 2024-08-30 08:44:23.647211: Epoch time: 52.75 s
346
+ 2024-08-30 08:44:24.951501:
347
+ 2024-08-30 08:44:24.952410: Epoch 846
348
+ 2024-08-30 08:44:24.953138: Current learning rate: 0.00186
349
+ 2024-08-30 08:45:15.575314: train_loss -0.8288
350
+ 2024-08-30 08:45:15.577284: val_loss -0.8433
351
+ 2024-08-30 08:45:15.578287: Pseudo dice [0.9362, 0.9328, 0.9073, 0.8303, 0.8414, 0.8708, 0.8822, 0.9292, 0.9562, 0.9539, 0.9443, 0.9305, 0.9291, 0.8906, 0.8432, 0.8253, 0.8535, 0.0, 0.9521, nan, nan]
352
+ 2024-08-30 08:45:15.579273: Epoch time: 50.63 s
353
+ 2024-08-30 08:45:17.240562:
354
+ 2024-08-30 08:45:17.241265: Epoch 847
355
+ 2024-08-30 08:45:17.241756: Current learning rate: 0.00185
356
+ 2024-08-30 08:46:09.978026: train_loss -0.8326
357
+ 2024-08-30 08:46:09.991204: val_loss -0.8519
358
+ 2024-08-30 08:46:09.992387: Pseudo dice [0.926, 0.8973, 0.8754, 0.911, 0.9288, 0.9329, 0.9321, 0.926, 0.9219, 0.921, 0.948, 0.963, 0.9617, 0.9694, 0.963, 0.9507, 0.9403, 0.0, 0.9505, nan, nan]
359
+ 2024-08-30 08:46:09.993431: Epoch time: 52.74 s
360
+ 2024-08-30 08:46:11.367785:
361
+ 2024-08-30 08:46:11.368587: Epoch 848
362
+ 2024-08-30 08:46:11.369292: Current learning rate: 0.00184
363
+ 2024-08-30 08:47:03.955757: train_loss -0.838
364
+ 2024-08-30 08:47:03.956916: val_loss -0.8315
365
+ 2024-08-30 08:47:03.957751: Pseudo dice [0.9125, 0.9179, 0.8678, 0.8423, 0.8697, 0.8744, 0.8542, 0.8571, 0.8618, 0.8344, 0.8276, 0.8869, 0.9626, 0.9507, 0.936, 0.9326, 0.9405, 0.0, 0.9413, nan, 0.0]
366
+ 2024-08-30 08:47:03.958437: Epoch time: 52.59 s
367
+ 2024-08-30 08:47:05.276408:
368
+ 2024-08-30 08:47:05.277321: Epoch 849
369
+ 2024-08-30 08:47:05.278058: Current learning rate: 0.00182
370
+ 2024-08-30 08:47:59.892816: train_loss -0.8387
371
+ 2024-08-30 08:47:59.895495: val_loss -0.8549
372
+ 2024-08-30 08:47:59.896668: Pseudo dice [0.9251, 0.9427, 0.9384, 0.9354, 0.9379, 0.9505, 0.959, 0.9614, 0.9629, 0.958, 0.9555, 0.9562, 0.9562, 0.936, 0.8962, 0.8824, 0.8624, 0.0, 0.9507, nan, nan]
373
+ 2024-08-30 08:47:59.897888: Epoch time: 54.62 s
374
+ 2024-08-30 08:48:03.877543:
375
+ 2024-08-30 08:48:03.878408: Epoch 850
376
+ 2024-08-30 08:48:03.879123: Current learning rate: 0.00181
377
+ 2024-08-30 08:48:55.590902: train_loss -0.8367
378
+ 2024-08-30 08:48:55.592170: val_loss -0.8651
379
+ 2024-08-30 08:48:55.593011: Pseudo dice [0.9056, 0.927, 0.9329, 0.9429, 0.9531, 0.9613, 0.9652, 0.9692, 0.9625, 0.9509, 0.9524, 0.9603, 0.9667, 0.9757, 0.9683, 0.957, 0.9337, nan, 0.9366, nan, nan]
380
+ 2024-08-30 08:48:55.593708: Epoch time: 51.72 s
381
+ 2024-08-30 08:48:57.592999:
382
+ 2024-08-30 08:48:57.593977: Epoch 851
383
+ 2024-08-30 08:48:57.594691: Current learning rate: 0.0018
384
+ 2024-08-30 08:49:48.381647: train_loss -0.8374
385
+ 2024-08-30 08:49:48.383764: val_loss -0.8453
386
+ 2024-08-30 08:49:48.384715: Pseudo dice [0.895, 0.8924, 0.8888, 0.8955, 0.8853, 0.8824, 0.9294, 0.9467, 0.9421, 0.9434, 0.9375, 0.9262, 0.9169, 0.9239, 0.9239, 0.929, 0.9112, 0.0, 0.9424, nan, nan]
387
+ 2024-08-30 08:49:48.385490: Epoch time: 50.79 s
388
+ 2024-08-30 08:49:49.953361:
389
+ 2024-08-30 08:49:49.954305: Epoch 852
390
+ 2024-08-30 08:49:49.955045: Current learning rate: 0.00179
391
+ 2024-08-30 08:50:41.454666: train_loss -0.8347
392
+ 2024-08-30 08:50:41.456775: val_loss -0.8491
393
+ 2024-08-30 08:50:41.458367: Pseudo dice [0.9167, 0.9272, 0.8905, 0.9042, 0.9136, 0.9085, 0.9005, 0.9117, 0.9186, 0.9246, 0.9365, 0.9549, 0.9551, 0.9315, 0.9235, 0.904, 0.885, 0.0, 0.9512, nan, 0.0]
394
+ 2024-08-30 08:50:41.459208: Epoch time: 51.5 s
395
+ 2024-08-30 08:50:42.787482:
396
+ 2024-08-30 08:50:42.788740: Epoch 853
397
+ 2024-08-30 08:50:42.789418: Current learning rate: 0.00178
398
+ 2024-08-30 08:51:35.049179: train_loss -0.8385
399
+ 2024-08-30 08:51:35.051316: val_loss -0.8338
400
+ 2024-08-30 08:51:35.052195: Pseudo dice [0.9174, 0.9189, 0.9197, 0.9246, 0.9394, 0.941, 0.9031, 0.8926, 0.8781, 0.8344, 0.7994, 0.8644, 0.9192, 0.944, 0.9667, 0.9473, 0.8746, 0.0, 0.9445, nan, nan]
401
+ 2024-08-30 08:51:35.053322: Epoch time: 52.26 s
402
+ 2024-08-30 08:51:36.377242:
403
+ 2024-08-30 08:51:36.378135: Epoch 854
404
+ 2024-08-30 08:51:36.378981: Current learning rate: 0.00177
405
+ 2024-08-30 08:52:28.232911: train_loss -0.8387
406
+ 2024-08-30 08:52:28.234886: val_loss -0.8301
407
+ 2024-08-30 08:52:28.235937: Pseudo dice [0.9305, 0.9367, 0.9232, 0.9403, 0.9553, 0.9441, 0.9246, 0.855, 0.8164, 0.826, 0.8148, 0.8342, 0.9149, 0.91, 0.9103, 0.9004, 0.9058, 0.0, 0.9433, nan, 0.0]
408
+ 2024-08-30 08:52:28.236702: Epoch time: 51.86 s
409
+ 2024-08-30 08:52:29.565022:
410
+ 2024-08-30 08:52:29.565928: Epoch 855
411
+ 2024-08-30 08:52:29.566649: Current learning rate: 0.00176
412
+ 2024-08-30 08:53:22.500609: train_loss -0.8342
413
+ 2024-08-30 08:53:22.502524: val_loss -0.856
414
+ 2024-08-30 08:53:22.503296: Pseudo dice [0.8973, 0.9256, 0.9276, 0.9283, 0.9204, 0.9272, 0.9373, 0.9462, 0.9605, 0.9675, 0.9693, 0.9664, 0.9648, 0.9482, 0.9414, 0.9262, 0.8635, 0.0, 0.9429, nan, nan]
415
+ 2024-08-30 08:53:22.504044: Epoch time: 52.94 s
416
+ 2024-08-30 08:53:23.820922:
417
+ 2024-08-30 08:53:23.821906: Epoch 856
418
+ 2024-08-30 08:53:23.822630: Current learning rate: 0.00175
419
+ 2024-08-30 08:54:16.268810: train_loss -0.8411
420
+ 2024-08-30 08:54:16.270410: val_loss -0.8504
421
+ 2024-08-30 08:54:16.271315: Pseudo dice [0.9122, 0.9143, 0.9029, 0.8923, 0.8937, 0.9052, 0.9128, 0.9075, 0.9167, 0.9291, 0.9404, 0.9495, 0.9684, 0.9705, 0.9591, 0.9309, 0.9091, 0.0, 0.9387, nan, 0.0]
422
+ 2024-08-30 08:54:16.272061: Epoch time: 52.45 s
423
+ 2024-08-30 08:54:17.691141:
424
+ 2024-08-30 08:54:17.692030: Epoch 857
425
+ 2024-08-30 08:54:17.692727: Current learning rate: 0.00174
426
+ 2024-08-30 08:55:09.571531: train_loss -0.832
427
+ 2024-08-30 08:55:09.573950: val_loss -0.849
428
+ 2024-08-30 08:55:09.575038: Pseudo dice [0.9242, 0.9466, 0.9406, 0.9254, 0.9234, 0.9233, 0.9262, 0.9339, 0.9336, 0.9337, 0.9398, 0.9177, 0.9436, 0.9119, 0.8793, 0.833, 0.7875, nan, 0.9264, nan, 0.0]
429
+ 2024-08-30 08:55:09.575829: Epoch time: 51.88 s
430
+ 2024-08-30 08:55:10.855058:
431
+ 2024-08-30 08:55:10.855939: Epoch 858
432
+ 2024-08-30 08:55:10.856600: Current learning rate: 0.00173
433
+ 2024-08-30 08:55:59.863614: train_loss -0.831
434
+ 2024-08-30 08:55:59.865005: val_loss -0.8535
435
+ 2024-08-30 08:55:59.867006: Pseudo dice [0.9404, 0.9531, 0.9496, 0.9549, 0.9598, 0.9671, 0.9671, 0.9523, 0.9575, 0.958, 0.9564, 0.933, 0.9251, 0.9185, 0.92, 0.9268, 0.8361, 0.0, 0.9322, nan, nan]
436
+ 2024-08-30 08:55:59.867766: Epoch time: 49.01 s
437
+ 2024-08-30 08:56:01.408063:
438
+ 2024-08-30 08:56:01.409021: Epoch 859
439
+ 2024-08-30 08:56:01.409722: Current learning rate: 0.00172
440
+ 2024-08-30 08:56:51.798097: train_loss -0.843
441
+ 2024-08-30 08:56:51.800311: val_loss -0.8369
442
+ 2024-08-30 08:56:51.801406: Pseudo dice [0.9064, 0.9308, 0.9259, 0.9113, 0.888, 0.8785, 0.8644, 0.8599, 0.8873, 0.9033, 0.918, 0.9246, 0.9489, 0.9225, 0.9154, 0.9183, 0.8533, 0.0, 0.9459, nan, 0.0]
443
+ 2024-08-30 08:56:51.802177: Epoch time: 50.39 s
444
+ 2024-08-30 08:56:53.236082:
445
+ 2024-08-30 08:56:53.237377: Epoch 860
446
+ 2024-08-30 08:56:53.238142: Current learning rate: 0.0017
447
+ 2024-08-30 08:57:48.362655: train_loss -0.8373
448
+ 2024-08-30 08:57:48.363925: val_loss -0.8358
449
+ 2024-08-30 08:57:48.364877: Pseudo dice [0.9434, 0.9557, 0.9561, 0.9474, 0.9004, 0.8748, 0.8762, 0.8653, 0.846, 0.8354, 0.8613, 0.91, 0.9531, 0.9548, 0.9597, 0.9397, 0.8697, 0.0, 0.9262, nan, nan]
450
+ 2024-08-30 08:57:48.365652: Epoch time: 55.13 s
451
+ 2024-08-30 08:57:49.672308:
452
+ 2024-08-30 08:57:49.673516: Epoch 861
453
+ 2024-08-30 08:57:49.674527: Current learning rate: 0.00169
454
+ 2024-08-30 08:58:45.218183: train_loss -0.8346
455
+ 2024-08-30 08:58:45.220060: val_loss -0.8465
456
+ 2024-08-30 08:58:45.220916: Pseudo dice [0.9053, 0.9293, 0.9208, 0.9106, 0.9059, 0.9117, 0.9204, 0.9207, 0.9181, 0.9415, 0.9398, 0.938, 0.9492, 0.9557, 0.9598, 0.9258, 0.8812, 0.0, 0.9454, nan, nan]
457
+ 2024-08-30 08:58:45.221845: Epoch time: 55.55 s
458
+ 2024-08-30 08:58:46.646538:
459
+ 2024-08-30 08:58:46.647485: Epoch 862
460
+ 2024-08-30 08:58:46.648240: Current learning rate: 0.00168
461
+ 2024-08-30 08:59:40.994913: train_loss -0.8318
462
+ 2024-08-30 08:59:40.996721: val_loss -0.851
463
+ 2024-08-30 08:59:40.997763: Pseudo dice [0.9387, 0.9371, 0.9391, 0.9518, 0.9575, 0.9651, 0.9665, 0.9642, 0.9657, 0.9506, 0.946, 0.9581, 0.9337, 0.8996, 0.8819, 0.8758, 0.8834, 0.0, 0.9446, nan, nan]
464
+ 2024-08-30 08:59:40.999017: Epoch time: 54.35 s
465
+ 2024-08-30 08:59:42.270347:
466
+ 2024-08-30 08:59:42.270894: Epoch 863
467
+ 2024-08-30 08:59:42.271382: Current learning rate: 0.00167
468
+ 2024-08-30 09:00:33.523203: train_loss -0.8386
469
+ 2024-08-30 09:00:33.525758: val_loss -0.8467
470
+ 2024-08-30 09:00:33.527037: Pseudo dice [0.9169, 0.9109, 0.8887, 0.9015, 0.9131, 0.9238, 0.9044, 0.9005, 0.8851, 0.8783, 0.9046, 0.9107, 0.9397, 0.9291, 0.9289, 0.9144, 0.8798, 0.0, 0.9498, nan, 0.0]
471
+ 2024-08-30 09:00:33.527949: Epoch time: 51.26 s
472
+ 2024-08-30 09:00:35.809411:
473
+ 2024-08-30 09:00:35.810287: Epoch 864
474
+ 2024-08-30 09:00:35.811031: Current learning rate: 0.00166
475
+ 2024-08-30 09:01:28.219671: train_loss -0.838
476
+ 2024-08-30 09:01:28.221019: val_loss -0.8554
477
+ 2024-08-30 09:01:28.221902: Pseudo dice [0.9124, 0.934, 0.9384, 0.9115, 0.9199, 0.9542, 0.9577, 0.9646, 0.9678, 0.9709, 0.9679, 0.9698, 0.9702, 0.9411, 0.9, 0.8693, 0.8403, 0.0, 0.9338, nan, nan]
478
+ 2024-08-30 09:01:28.222677: Epoch time: 52.41 s
479
+ 2024-08-30 09:01:29.836327:
480
+ 2024-08-30 09:01:29.837203: Epoch 865
481
+ 2024-08-30 09:01:29.837966: Current learning rate: 0.00165
482
+ 2024-08-30 09:02:22.851339: train_loss -0.8418
483
+ 2024-08-30 09:02:22.853962: val_loss -0.8571
484
+ 2024-08-30 09:02:22.854879: Pseudo dice [0.942, 0.9536, 0.952, 0.9326, 0.9033, 0.8973, 0.9031, 0.9102, 0.9125, 0.9062, 0.8857, 0.9213, 0.9625, 0.9712, 0.9754, 0.9669, 0.9257, 0.0, 0.9539, nan, nan]
485
+ 2024-08-30 09:02:22.855863: Epoch time: 53.02 s
486
+ 2024-08-30 09:02:24.152373:
487
+ 2024-08-30 09:02:24.153325: Epoch 866
488
+ 2024-08-30 09:02:24.154001: Current learning rate: 0.00164
489
+ 2024-08-30 09:03:16.440200: train_loss -0.8464
490
+ 2024-08-30 09:03:16.441539: val_loss -0.8543
491
+ 2024-08-30 09:03:16.442665: Pseudo dice [0.9283, 0.9498, 0.9386, 0.9328, 0.953, 0.9616, 0.9685, 0.9518, 0.9429, 0.9621, 0.9631, 0.9694, 0.9678, 0.9614, 0.9301, 0.8632, 0.8204, 0.0, 0.9587, nan, nan]
492
+ 2024-08-30 09:03:16.443727: Epoch time: 52.29 s
493
+ 2024-08-30 09:03:17.824345:
494
+ 2024-08-30 09:03:17.825303: Epoch 867
495
+ 2024-08-30 09:03:17.825968: Current learning rate: 0.00163
496
+ 2024-08-30 09:04:08.592646: train_loss -0.8416
497
+ 2024-08-30 09:04:08.595639: val_loss -0.8524
498
+ 2024-08-30 09:04:08.596529: Pseudo dice [0.9298, 0.9471, 0.9465, 0.9608, 0.9608, 0.9581, 0.9576, 0.9526, 0.9453, 0.9294, 0.9132, 0.9362, 0.9493, 0.9362, 0.9075, 0.8671, 0.7967, 0.0, 0.9418, nan, nan]
499
+ 2024-08-30 09:04:08.597581: Epoch time: 50.77 s
500
+ 2024-08-30 09:04:09.935222:
501
+ 2024-08-30 09:04:09.936138: Epoch 868
502
+ 2024-08-30 09:04:09.936894: Current learning rate: 0.00162
503
+ 2024-08-30 09:05:02.175758: train_loss -0.8382
504
+ 2024-08-30 09:05:02.180358: val_loss -0.8533
505
+ 2024-08-30 09:05:02.181579: Pseudo dice [0.9343, 0.9478, 0.9531, 0.9568, 0.9592, 0.9551, 0.9494, 0.933, 0.9293, 0.9281, 0.9349, 0.9247, 0.9568, 0.9299, 0.9029, 0.9175, 0.8949, 0.0, 0.9369, nan, 0.0]
506
+ 2024-08-30 09:05:02.182430: Epoch time: 52.24 s
507
+ 2024-08-30 09:05:03.815528:
508
+ 2024-08-30 09:05:03.817090: Epoch 869
509
+ 2024-08-30 09:05:03.817828: Current learning rate: 0.00161
510
+ 2024-08-30 09:05:57.417204: train_loss -0.8328
511
+ 2024-08-30 09:05:57.419668: val_loss -0.8604
512
+ 2024-08-30 09:05:57.420626: Pseudo dice [0.9082, 0.949, 0.9422, 0.9247, 0.9396, 0.9548, 0.9273, 0.9226, 0.9415, 0.9536, 0.9577, 0.9531, 0.966, 0.9682, 0.9672, 0.9542, 0.9222, 0.0, 0.9538, nan, nan]
513
+ 2024-08-30 09:05:57.421386: Epoch time: 53.6 s
514
+ 2024-08-30 09:05:58.851858:
515
+ 2024-08-30 09:05:58.852747: Epoch 870
516
+ 2024-08-30 09:05:58.853485: Current learning rate: 0.00159
517
+ 2024-08-30 09:06:52.801990: train_loss -0.8372
518
+ 2024-08-30 09:06:52.803658: val_loss -0.8536
519
+ 2024-08-30 09:06:52.804487: Pseudo dice [0.9369, 0.9397, 0.9356, 0.9546, 0.9619, 0.9644, 0.9407, 0.9462, 0.9642, 0.9676, 0.9406, 0.9255, 0.8748, 0.8859, 0.9038, 0.8989, 0.903, 0.0, 0.9541, nan, 0.0]
520
+ 2024-08-30 09:06:52.805259: Epoch time: 53.95 s
521
+ 2024-08-30 09:06:54.142854:
522
+ 2024-08-30 09:06:54.143848: Epoch 871
523
+ 2024-08-30 09:06:54.144514: Current learning rate: 0.00158
524
+ 2024-08-30 09:07:48.394995: train_loss -0.8409
525
+ 2024-08-30 09:07:48.397168: val_loss -0.8576
526
+ 2024-08-30 09:07:48.398114: Pseudo dice [0.9372, 0.9585, 0.9488, 0.9537, 0.9626, 0.9471, 0.9049, 0.9016, 0.9215, 0.9314, 0.9359, 0.9476, 0.9646, 0.9705, 0.9729, 0.962, 0.9385, 0.0, 0.9599, nan, nan]
527
+ 2024-08-30 09:07:48.398971: Epoch time: 54.26 s
528
+ 2024-08-30 09:07:49.755149:
529
+ 2024-08-30 09:07:49.756004: Epoch 872
530
+ 2024-08-30 09:07:49.756696: Current learning rate: 0.00157
531
+ 2024-08-30 09:08:43.106714: train_loss -0.8371
532
+ 2024-08-30 09:08:43.107915: val_loss -0.8562
533
+ 2024-08-30 09:08:43.108848: Pseudo dice [0.9368, 0.9445, 0.9531, 0.9557, 0.9561, 0.962, 0.9412, 0.9402, 0.953, 0.9583, 0.9591, 0.9518, 0.9686, 0.9571, 0.9379, 0.8977, 0.8283, 0.0, 0.9554, nan, 0.0]
534
+ 2024-08-30 09:08:43.109610: Epoch time: 53.35 s
535
+ 2024-08-30 09:08:44.639570:
536
+ 2024-08-30 09:08:44.640445: Epoch 873
537
+ 2024-08-30 09:08:44.641129: Current learning rate: 0.00156
538
+ 2024-08-30 09:09:35.810926: train_loss -0.843
539
+ 2024-08-30 09:09:35.813389: val_loss -0.8493
540
+ 2024-08-30 09:09:35.814319: Pseudo dice [0.9132, 0.9213, 0.9236, 0.9295, 0.9249, 0.9122, 0.8885, 0.8997, 0.8974, 0.9023, 0.9263, 0.9364, 0.9549, 0.9696, 0.9662, 0.9468, 0.8956, 0.0, 0.9346, nan, nan]
541
+ 2024-08-30 09:09:35.815161: Epoch time: 51.17 s
542
+ 2024-08-30 09:09:37.314640:
543
+ 2024-08-30 09:09:37.315544: Epoch 874
544
+ 2024-08-30 09:09:37.316256: Current learning rate: 0.00155
545
+ 2024-08-30 09:10:31.548849: train_loss -0.8447
546
+ 2024-08-30 09:10:31.549944: val_loss -0.8468
547
+ 2024-08-30 09:10:31.550888: Pseudo dice [0.9228, 0.9285, 0.9166, 0.931, 0.9581, 0.9519, 0.9376, 0.9329, 0.9187, 0.9142, 0.9283, 0.9442, 0.923, 0.8854, 0.851, 0.8311, 0.7589, 0.0, 0.9417, nan, nan]
548
+ 2024-08-30 09:10:31.551782: Epoch time: 54.24 s
549
+ 2024-08-30 09:10:32.872042:
550
+ 2024-08-30 09:10:32.872933: Epoch 875
551
+ 2024-08-30 09:10:32.873559: Current learning rate: 0.00154
552
+ 2024-08-30 09:11:25.913647: train_loss -0.8416
553
+ 2024-08-30 09:11:25.916418: val_loss -0.8512
554
+ 2024-08-30 09:11:25.917590: Pseudo dice [0.9287, 0.9457, 0.9462, 0.923, 0.8986, 0.9299, 0.9323, 0.9177, 0.9126, 0.9143, 0.9129, 0.9478, 0.9649, 0.9579, 0.9596, 0.947, 0.865, 0.0, 0.9397, nan, nan]
555
+ 2024-08-30 09:11:25.918908: Epoch time: 53.04 s
556
+ 2024-08-30 09:11:27.242563:
557
+ 2024-08-30 09:11:27.243446: Epoch 876
558
+ 2024-08-30 09:11:27.244117: Current learning rate: 0.00153
559
+ 2024-08-30 09:12:16.963555: train_loss -0.8312
560
+ 2024-08-30 09:12:16.965032: val_loss -0.8509
561
+ 2024-08-30 09:12:16.966198: Pseudo dice [0.9027, 0.9104, 0.8725, 0.8879, 0.9106, 0.9152, 0.9027, 0.883, 0.8969, 0.9002, 0.9077, 0.9196, 0.9159, 0.9291, 0.9282, 0.947, 0.8979, nan, 0.9356, nan, nan]
562
+ 2024-08-30 09:12:16.967159: Epoch time: 49.72 s
563
+ 2024-08-30 09:12:18.284918:
564
+ 2024-08-30 09:12:18.285751: Epoch 877
565
+ 2024-08-30 09:12:18.286430: Current learning rate: 0.00152
566
+ 2024-08-30 09:13:09.038544: train_loss -0.8394
567
+ 2024-08-30 09:13:09.040658: val_loss -0.8522
568
+ 2024-08-30 09:13:09.041566: Pseudo dice [0.9443, 0.9627, 0.9609, 0.9649, 0.9532, 0.9516, 0.9521, 0.937, 0.9204, 0.9069, 0.9125, 0.923, 0.9625, 0.9268, 0.939, 0.9383, 0.8919, 0.0, 0.9295, nan, 0.0]
569
+ 2024-08-30 09:13:09.042206: Epoch time: 50.76 s
570
+ 2024-08-30 09:13:11.051424:
571
+ 2024-08-30 09:13:11.052295: Epoch 878
572
+ 2024-08-30 09:13:11.052982: Current learning rate: 0.00151
573
+ 2024-08-30 09:14:01.156067: train_loss -0.8369
574
+ 2024-08-30 09:14:01.157804: val_loss -0.8611
575
+ 2024-08-30 09:14:01.158995: Pseudo dice [0.9301, 0.9615, 0.9623, 0.9619, 0.9621, 0.9645, 0.965, 0.9523, 0.9359, 0.9281, 0.9196, 0.9195, 0.9647, 0.967, 0.9233, 0.8982, 0.9088, nan, 0.9421, nan, nan]
576
+ 2024-08-30 09:14:01.159832: Epoch time: 50.11 s
577
+ 2024-08-30 09:14:02.494009:
578
+ 2024-08-30 09:14:02.494841: Epoch 879
579
+ 2024-08-30 09:14:02.495541: Current learning rate: 0.00149
580
+ 2024-08-30 09:14:53.631948: train_loss -0.836
581
+ 2024-08-30 09:14:53.633824: val_loss -0.8332
582
+ 2024-08-30 09:14:53.634913: Pseudo dice [0.9079, 0.876, 0.8622, 0.9014, 0.9182, 0.9402, 0.9176, 0.8935, 0.8962, 0.9322, 0.9457, 0.9458, 0.9375, 0.8962, 0.8779, 0.8574, 0.8324, 0.0, 0.9115, nan, nan]
583
+ 2024-08-30 09:14:53.636594: Epoch time: 51.14 s
584
+ 2024-08-30 09:14:55.305416:
585
+ 2024-08-30 09:14:55.306445: Epoch 880
586
+ 2024-08-30 09:14:55.307124: Current learning rate: 0.00148
587
+ 2024-08-30 09:15:48.906780: train_loss -0.8415
588
+ 2024-08-30 09:15:48.908741: val_loss -0.8419
589
+ 2024-08-30 09:15:48.909892: Pseudo dice [0.9333, 0.9413, 0.946, 0.9542, 0.9622, 0.9293, 0.8882, 0.8673, 0.8643, 0.867, 0.8732, 0.8859, 0.9404, 0.9425, 0.8989, 0.8451, 0.7916, 0.0, 0.9407, nan, 0.0]
590
+ 2024-08-30 09:15:48.910892: Epoch time: 53.6 s
591
+ 2024-08-30 09:15:50.297559:
592
+ 2024-08-30 09:15:50.298381: Epoch 881
593
+ 2024-08-30 09:15:50.299062: Current learning rate: 0.00147
594
+ 2024-08-30 09:16:42.509722: train_loss -0.8383
595
+ 2024-08-30 09:16:42.511638: val_loss -0.8445
596
+ 2024-08-30 09:16:42.512475: Pseudo dice [0.906, 0.94, 0.9296, 0.9233, 0.9014, 0.8822, 0.889, 0.8779, 0.8718, 0.8774, 0.8619, 0.8644, 0.949, 0.9536, 0.9521, 0.9286, 0.8987, 0.0, 0.9398, nan, 0.0]
597
+ 2024-08-30 09:16:42.513572: Epoch time: 52.22 s
598
+ 2024-08-30 09:16:43.979096:
599
+ 2024-08-30 09:16:43.979967: Epoch 882
600
+ 2024-08-30 09:16:43.980589: Current learning rate: 0.00146
601
+ 2024-08-30 09:17:36.578169: train_loss -0.8375
602
+ 2024-08-30 09:17:36.579384: val_loss -0.8352
603
+ 2024-08-30 09:17:36.580246: Pseudo dice [0.9135, 0.9247, 0.9195, 0.9266, 0.933, 0.9166, 0.9008, 0.9009, 0.9012, 0.8523, 0.8407, 0.8942, 0.8531, 0.7992, 0.819, 0.8354, 0.8685, 0.0, 0.9542, nan, nan]
604
+ 2024-08-30 09:17:36.581056: Epoch time: 52.6 s
605
+ 2024-08-30 09:17:38.009704:
606
+ 2024-08-30 09:17:38.010733: Epoch 883
607
+ 2024-08-30 09:17:38.011462: Current learning rate: 0.00145
608
+ 2024-08-30 09:18:28.543527: train_loss -0.8386
609
+ 2024-08-30 09:18:28.545922: val_loss -0.8393
610
+ 2024-08-30 09:18:28.546789: Pseudo dice [0.9315, 0.9584, 0.9628, 0.9606, 0.9533, 0.9611, 0.9706, 0.9649, 0.9607, 0.966, 0.9659, 0.9589, 0.9582, 0.9026, 0.8605, 0.7682, 0.7065, 0.0, 0.9238, nan, 0.0]
611
+ 2024-08-30 09:18:28.547521: Epoch time: 50.54 s
612
+ 2024-08-30 09:18:29.982323:
613
+ 2024-08-30 09:18:29.983205: Epoch 884
614
+ 2024-08-30 09:18:29.983942: Current learning rate: 0.00144
615
+ 2024-08-30 09:19:22.844262: train_loss -0.8407
616
+ 2024-08-30 09:19:22.845461: val_loss -0.8468
617
+ 2024-08-30 09:19:22.846434: Pseudo dice [0.8979, 0.9238, 0.9197, 0.932, 0.9348, 0.9316, 0.9168, 0.9015, 0.9097, 0.9157, 0.8999, 0.8794, 0.9356, 0.9102, 0.8713, 0.8698, 0.9059, nan, 0.95, nan, 0.0]
618
+ 2024-08-30 09:19:22.847541: Epoch time: 52.86 s
619
+ 2024-08-30 09:19:24.125946:
620
+ 2024-08-30 09:19:24.126772: Epoch 885
621
+ 2024-08-30 09:19:24.127533: Current learning rate: 0.00143
622
+ 2024-08-30 09:20:17.535192: train_loss -0.8435
623
+ 2024-08-30 09:20:17.538976: val_loss -0.8716
624
+ 2024-08-30 09:20:17.539990: Pseudo dice [0.9421, 0.9584, 0.9499, 0.9534, 0.9657, 0.9699, 0.9641, 0.9614, 0.9628, 0.9674, 0.9511, 0.9531, 0.9645, 0.961, 0.9554, 0.9447, 0.8955, nan, 0.9404, nan, nan]
625
+ 2024-08-30 09:20:17.540793: Epoch time: 53.41 s
626
+ 2024-08-30 09:20:19.032748:
627
+ 2024-08-30 09:20:19.033603: Epoch 886
628
+ 2024-08-30 09:20:19.034249: Current learning rate: 0.00142
629
+ 2024-08-30 09:21:10.380071: train_loss -0.8451
630
+ 2024-08-30 09:21:10.391248: val_loss -0.8491
631
+ 2024-08-30 09:21:10.392237: Pseudo dice [0.923, 0.9434, 0.9261, 0.9186, 0.9428, 0.9434, 0.9265, 0.89, 0.8506, 0.8471, 0.899, 0.9226, 0.9481, 0.9505, 0.9462, 0.9108, 0.8979, 0.0, 0.9532, nan, 0.0]
632
+ 2024-08-30 09:21:10.392935: Epoch time: 51.35 s
633
+ 2024-08-30 09:21:11.701781:
634
+ 2024-08-30 09:21:11.703192: Epoch 887
635
+ 2024-08-30 09:21:11.703910: Current learning rate: 0.00141
636
+ 2024-08-30 09:22:04.421584: train_loss -0.8447
637
+ 2024-08-30 09:22:04.423617: val_loss -0.8645
638
+ 2024-08-30 09:22:04.424931: Pseudo dice [0.9246, 0.9471, 0.9482, 0.954, 0.9557, 0.9558, 0.9515, 0.9305, 0.9371, 0.9582, 0.9573, 0.961, 0.9651, 0.9669, 0.9637, 0.9546, 0.9001, 0.0, 0.9515, nan, nan]
639
+ 2024-08-30 09:22:04.425783: Epoch time: 52.72 s
640
+ 2024-08-30 09:22:05.792814:
641
+ 2024-08-30 09:22:05.793650: Epoch 888
642
+ 2024-08-30 09:22:05.794380: Current learning rate: 0.00139
643
+ 2024-08-30 09:22:54.214429: train_loss -0.8439
644
+ 2024-08-30 09:22:54.215655: val_loss -0.8541
645
+ 2024-08-30 09:22:54.216516: Pseudo dice [0.9066, 0.9146, 0.9315, 0.9335, 0.9391, 0.9587, 0.9621, 0.9562, 0.9455, 0.9305, 0.929, 0.9336, 0.9524, 0.9605, 0.9197, 0.9003, 0.8764, 0.0, 0.9465, nan, 0.0]
646
+ 2024-08-30 09:22:54.217762: Epoch time: 48.42 s
647
+ 2024-08-30 09:22:55.815449:
648
+ 2024-08-30 09:22:55.816295: Epoch 889
649
+ 2024-08-30 09:22:55.816990: Current learning rate: 0.00138
650
+ 2024-08-30 09:23:47.761132: train_loss -0.8433
651
+ 2024-08-30 09:23:47.763311: val_loss -0.8429
652
+ 2024-08-30 09:23:47.764520: Pseudo dice [0.9395, 0.9501, 0.9441, 0.955, 0.9434, 0.9245, 0.8983, 0.8933, 0.9066, 0.9214, 0.9116, 0.8908, 0.9325, 0.9154, 0.9253, 0.9247, 0.8588, 0.0, 0.9472, nan, 0.0]
653
+ 2024-08-30 09:23:47.765725: Epoch time: 51.95 s
654
+ 2024-08-30 09:23:49.115229:
655
+ 2024-08-30 09:23:49.116137: Epoch 890
656
+ 2024-08-30 09:23:49.116842: Current learning rate: 0.00137
657
+ 2024-08-30 09:24:41.991803: train_loss -0.8406
658
+ 2024-08-30 09:24:41.993486: val_loss -0.8592
659
+ 2024-08-30 09:24:41.994666: Pseudo dice [0.9254, 0.9517, 0.9499, 0.9592, 0.9642, 0.9661, 0.9649, 0.9717, 0.9627, 0.9479, 0.9179, 0.9195, 0.9294, 0.9121, 0.9151, 0.9349, 0.9356, 0.0, 0.9414, nan, 0.0]
660
+ 2024-08-30 09:24:41.995376: Epoch time: 52.88 s
661
+ 2024-08-30 09:24:44.173131:
662
+ 2024-08-30 09:24:44.174046: Epoch 891
663
+ 2024-08-30 09:24:44.174711: Current learning rate: 0.00136
664
+ 2024-08-30 09:25:37.189787: train_loss -0.8482
665
+ 2024-08-30 09:25:37.191763: val_loss -0.8563
666
+ 2024-08-30 09:25:37.192794: Pseudo dice [0.9182, 0.9365, 0.9428, 0.9554, 0.9561, 0.9469, 0.8903, 0.8663, 0.9116, 0.9309, 0.9478, 0.9225, 0.9344, 0.961, 0.9478, 0.9201, 0.8967, 0.0, 0.9472, nan, 0.0]
667
+ 2024-08-30 09:25:37.193596: Epoch time: 53.02 s
668
+ 2024-08-30 09:25:38.676145:
669
+ 2024-08-30 09:25:38.677552: Epoch 892
670
+ 2024-08-30 09:25:38.678295: Current learning rate: 0.00135
671
+ 2024-08-30 09:26:31.698332: train_loss -0.8475
672
+ 2024-08-30 09:26:31.699583: val_loss -0.8362
673
+ 2024-08-30 09:26:31.700533: Pseudo dice [0.8954, 0.8561, 0.8009, 0.8196, 0.8477, 0.8508, 0.8414, 0.8371, 0.8449, 0.8873, 0.924, 0.9297, 0.9266, 0.8997, 0.9062, 0.9172, 0.9063, 0.0, 0.935, nan, 0.0]
674
+ 2024-08-30 09:26:31.701498: Epoch time: 53.03 s
675
+ 2024-08-30 09:26:33.110759:
676
+ 2024-08-30 09:26:33.111785: Epoch 893
677
+ 2024-08-30 09:26:33.112508: Current learning rate: 0.00134
678
+ 2024-08-30 09:27:26.704813: train_loss -0.8476
679
+ 2024-08-30 09:27:26.706740: val_loss -0.8651
680
+ 2024-08-30 09:27:26.707685: Pseudo dice [0.9512, 0.9608, 0.9606, 0.9644, 0.9625, 0.9649, 0.9582, 0.9636, 0.9649, 0.9654, 0.9666, 0.9673, 0.9705, 0.9697, 0.9489, 0.9124, 0.8684, nan, 0.9334, nan, nan]
681
+ 2024-08-30 09:27:26.708473: Epoch time: 53.6 s
682
+ 2024-08-30 09:27:28.148740:
683
+ 2024-08-30 09:27:28.149570: Epoch 894
684
+ 2024-08-30 09:27:28.150343: Current learning rate: 0.00133
685
+ 2024-08-30 09:28:20.282127: train_loss -0.8424
686
+ 2024-08-30 09:28:20.283353: val_loss -0.8536
687
+ 2024-08-30 09:28:20.284453: Pseudo dice [0.9245, 0.9397, 0.9433, 0.9622, 0.9543, 0.9532, 0.9441, 0.9087, 0.8798, 0.901, 0.9302, 0.9616, 0.9584, 0.9219, 0.8654, 0.8241, 0.8262, 0.0, 0.9555, nan, 0.0]
688
+ 2024-08-30 09:28:20.285292: Epoch time: 52.14 s
689
+ 2024-08-30 09:28:21.591115:
690
+ 2024-08-30 09:28:21.592039: Epoch 895
691
+ 2024-08-30 09:28:21.592731: Current learning rate: 0.00132
692
+ 2024-08-30 09:29:13.610711: train_loss -0.8371
693
+ 2024-08-30 09:29:13.613045: val_loss -0.8447
694
+ 2024-08-30 09:29:13.613831: Pseudo dice [0.9361, 0.9286, 0.913, 0.9208, 0.9298, 0.9371, 0.926, 0.9355, 0.9389, 0.9503, 0.9576, 0.9415, 0.9358, 0.9062, 0.8308, 0.8366, 0.8701, 0.0, 0.9601, nan, 0.0]
695
+ 2024-08-30 09:29:13.614555: Epoch time: 52.02 s
696
+ 2024-08-30 09:29:15.072567:
697
+ 2024-08-30 09:29:15.073473: Epoch 896
698
+ 2024-08-30 09:29:15.074170: Current learning rate: 0.0013
699
+ 2024-08-30 09:30:05.941520: train_loss -0.8454
700
+ 2024-08-30 09:30:05.942658: val_loss -0.8582
701
+ 2024-08-30 09:30:05.943528: Pseudo dice [0.9268, 0.9585, 0.964, 0.9661, 0.9691, 0.9724, 0.9673, 0.9629, 0.9707, 0.9727, 0.9701, 0.9685, 0.9605, 0.942, 0.9377, 0.9236, 0.8866, 0.0, 0.9449, nan, nan]
702
+ 2024-08-30 09:30:05.944242: Epoch time: 50.87 s
703
+ 2024-08-30 09:30:07.385942:
704
+ 2024-08-30 09:30:07.386874: Epoch 897
705
+ 2024-08-30 09:30:07.387588: Current learning rate: 0.00129
706
+ 2024-08-30 09:31:00.393564: train_loss -0.8407
707
+ 2024-08-30 09:31:00.395521: val_loss -0.865
708
+ 2024-08-30 09:31:00.396342: Pseudo dice [0.9355, 0.9507, 0.9489, 0.9609, 0.9657, 0.9578, 0.9545, 0.9639, 0.9379, 0.9462, 0.9622, 0.9518, 0.9627, 0.9566, 0.9622, 0.9657, 0.9541, 0.0, 0.9479, nan, nan]
709
+ 2024-08-30 09:31:00.397204: Epoch time: 53.01 s
710
+ 2024-08-30 09:31:01.742066:
711
+ 2024-08-30 09:31:01.742928: Epoch 898
712
+ 2024-08-30 09:31:01.743632: Current learning rate: 0.00128
713
+ 2024-08-30 09:31:53.428476: train_loss -0.8454
714
+ 2024-08-30 09:31:53.429614: val_loss -0.8472
715
+ 2024-08-30 09:31:53.430410: Pseudo dice [0.9033, 0.9079, 0.896, 0.902, 0.9158, 0.9104, 0.915, 0.9356, 0.9496, 0.961, 0.9447, 0.933, 0.957, 0.9114, 0.8735, 0.8528, 0.8598, 0.0, 0.9625, nan, 0.0]
716
+ 2024-08-30 09:31:53.431237: Epoch time: 51.69 s
717
+ 2024-08-30 09:31:54.702623:
718
+ 2024-08-30 09:31:54.703510: Epoch 899
719
+ 2024-08-30 09:31:54.704171: Current learning rate: 0.00127
720
+ 2024-08-30 09:32:46.171492: train_loss -0.8466
721
+ 2024-08-30 09:32:46.173654: val_loss -0.8601
722
+ 2024-08-30 09:32:46.174922: Pseudo dice [0.9211, 0.9391, 0.9364, 0.9198, 0.9132, 0.9096, 0.9293, 0.9308, 0.9449, 0.9456, 0.9465, 0.9689, 0.9747, 0.9552, 0.9235, 0.9176, 0.9041, 0.0, 0.9545, nan, nan]
723
+ 2024-08-30 09:32:46.175740: Epoch time: 51.47 s
724
+ 2024-08-30 09:32:50.069995:
725
+ 2024-08-30 09:32:50.070864: Epoch 900
726
+ 2024-08-30 09:32:50.071557: Current learning rate: 0.00126
727
+ 2024-08-30 09:33:43.996930: train_loss -0.8401
728
+ 2024-08-30 09:33:43.998721: val_loss -0.8438
729
+ 2024-08-30 09:33:43.999696: Pseudo dice [0.9336, 0.9499, 0.9461, 0.9209, 0.8947, 0.9152, 0.9317, 0.9441, 0.9511, 0.9566, 0.9508, 0.9434, 0.9473, 0.9065, 0.8691, 0.8217, 0.7558, 0.0, 0.9578, nan, nan]
730
+ 2024-08-30 09:33:44.000448: Epoch time: 53.93 s
731
+ 2024-08-30 09:33:45.373267:
732
+ 2024-08-30 09:33:45.374262: Epoch 901
733
+ 2024-08-30 09:33:45.375159: Current learning rate: 0.00125
734
+ 2024-08-30 09:34:37.210720: train_loss -0.8382
735
+ 2024-08-30 09:34:37.212937: val_loss -0.8283
736
+ 2024-08-30 09:34:37.213904: Pseudo dice [0.9264, 0.9371, 0.9033, 0.8907, 0.889, 0.8903, 0.8915, 0.8855, 0.9019, 0.8993, 0.8945, 0.8742, 0.8479, 0.7991, 0.7934, 0.8049, 0.7821, 0.0, 0.9344, nan, 0.0]
737
+ 2024-08-30 09:34:37.215112: Epoch time: 51.84 s
738
+ 2024-08-30 09:34:38.528410:
739
+ 2024-08-30 09:34:38.529321: Epoch 902
740
+ 2024-08-30 09:34:38.530048: Current learning rate: 0.00124
741
+ 2024-08-30 09:35:29.587760: train_loss -0.8428
742
+ 2024-08-30 09:35:29.588944: val_loss -0.8584
743
+ 2024-08-30 09:35:29.589844: Pseudo dice [0.9253, 0.9443, 0.9539, 0.9341, 0.9249, 0.9271, 0.9274, 0.9276, 0.9304, 0.9191, 0.9291, 0.9536, 0.9517, 0.9346, 0.9329, 0.9325, 0.9259, nan, 0.9478, nan, nan]
744
+ 2024-08-30 09:35:29.590628: Epoch time: 51.06 s
745
+ 2024-08-30 09:35:31.090321:
746
+ 2024-08-30 09:35:31.091160: Epoch 903
747
+ 2024-08-30 09:35:31.091836: Current learning rate: 0.00122
748
+ 2024-08-30 09:36:24.885172: train_loss -0.8496
749
+ 2024-08-30 09:36:24.887835: val_loss -0.8514
750
+ 2024-08-30 09:36:24.888869: Pseudo dice [0.9331, 0.9464, 0.956, 0.964, 0.9385, 0.923, 0.9325, 0.9447, 0.9396, 0.9333, 0.9441, 0.9419, 0.9493, 0.954, 0.9463, 0.9194, 0.8672, 0.0, 0.9469, nan, 0.0]
751
+ 2024-08-30 09:36:24.889669: Epoch time: 53.8 s
752
+ 2024-08-30 09:36:26.996505:
753
+ 2024-08-30 09:36:26.997940: Epoch 904
754
+ 2024-08-30 09:36:26.998565: Current learning rate: 0.00121
755
+ 2024-08-30 09:37:17.406534: train_loss -0.8477
756
+ 2024-08-30 09:37:17.407805: val_loss -0.8589
757
+ 2024-08-30 09:37:17.408911: Pseudo dice [0.9487, 0.956, 0.948, 0.9506, 0.9625, 0.968, 0.9658, 0.9577, 0.9534, 0.9472, 0.9472, 0.9547, 0.9637, 0.9661, 0.9411, 0.906, 0.8633, 0.0, 0.9433, nan, nan]
758
+ 2024-08-30 09:37:17.409878: Epoch time: 50.41 s
759
+ 2024-08-30 09:37:18.711897:
760
+ 2024-08-30 09:37:18.712965: Epoch 905
761
+ 2024-08-30 09:37:18.713766: Current learning rate: 0.0012
762
+ 2024-08-30 09:38:09.880386: train_loss -0.8408
763
+ 2024-08-30 09:38:09.882540: val_loss -0.8431
764
+ 2024-08-30 09:38:09.883490: Pseudo dice [0.9321, 0.9468, 0.93, 0.9346, 0.9374, 0.9305, 0.8557, 0.8492, 0.9061, 0.9543, 0.9579, 0.9045, 0.8719, 0.8568, 0.8335, 0.862, 0.8597, 0.0, 0.9552, nan, nan]
765
+ 2024-08-30 09:38:09.884215: Epoch time: 51.17 s
766
+ 2024-08-30 09:38:11.401536:
767
+ 2024-08-30 09:38:11.402362: Epoch 906
768
+ 2024-08-30 09:38:11.403127: Current learning rate: 0.00119
769
+ 2024-08-30 09:39:07.168600: train_loss -0.8398
770
+ 2024-08-30 09:39:07.169694: val_loss -0.8607
771
+ 2024-08-30 09:39:07.170516: Pseudo dice [0.946, 0.9336, 0.9198, 0.9418, 0.9606, 0.9684, 0.9698, 0.9646, 0.9532, 0.9202, 0.8896, 0.9159, 0.9412, 0.9115, 0.9136, 0.9261, 0.9213, nan, 0.9496, nan, nan]
772
+ 2024-08-30 09:39:07.171190: Epoch time: 55.77 s
773
+ 2024-08-30 09:39:08.707077:
774
+ 2024-08-30 09:39:08.708077: Epoch 907
775
+ 2024-08-30 09:39:08.708838: Current learning rate: 0.00118
776
+ 2024-08-30 09:40:01.850905: train_loss -0.8436
777
+ 2024-08-30 09:40:01.852901: val_loss -0.8652
778
+ 2024-08-30 09:40:01.853704: Pseudo dice [0.9414, 0.9518, 0.9357, 0.9309, 0.9494, 0.9599, 0.9594, 0.9684, 0.972, 0.9718, 0.9647, 0.9489, 0.9495, 0.9579, 0.9734, 0.9602, 0.9444, nan, 0.9474, nan, nan]
779
+ 2024-08-30 09:40:01.854403: Epoch time: 53.15 s
780
+ 2024-08-30 09:40:01.855169: Yayy! New best EMA pseudo Dice: 0.8798
781
+ 2024-08-30 09:40:05.744240:
782
+ 2024-08-30 09:40:05.745144: Epoch 908
783
+ 2024-08-30 09:40:05.745888: Current learning rate: 0.00117
784
+ 2024-08-30 09:40:56.679379: train_loss -0.8408
785
+ 2024-08-30 09:40:56.681270: val_loss -0.8655
786
+ 2024-08-30 09:40:56.682125: Pseudo dice [0.9359, 0.9569, 0.952, 0.9585, 0.9448, 0.9418, 0.9537, 0.9588, 0.9417, 0.9218, 0.9166, 0.9346, 0.9431, 0.9404, 0.9281, 0.9238, 0.913, 0.0, 0.9597, nan, nan]
787
+ 2024-08-30 09:40:56.682843: Epoch time: 50.94 s
788
+ 2024-08-30 09:40:56.683533: Yayy! New best EMA pseudo Dice: 0.8809
789
+ 2024-08-30 09:41:00.972686:
790
+ 2024-08-30 09:41:00.973612: Epoch 909
791
+ 2024-08-30 09:41:00.974352: Current learning rate: 0.00116
792
+ 2024-08-30 09:41:52.229133: train_loss -0.8412
793
+ 2024-08-30 09:41:52.231776: val_loss -0.8727
794
+ 2024-08-30 09:41:52.232930: Pseudo dice [0.918, 0.9451, 0.9422, 0.9508, 0.9556, 0.964, 0.9644, 0.9671, 0.9645, 0.9655, 0.9627, 0.9657, 0.973, 0.97, 0.9637, 0.9673, 0.9297, nan, 0.9402, nan, nan]
795
+ 2024-08-30 09:41:52.234144: Epoch time: 51.26 s
796
+ 2024-08-30 09:41:52.235236: Yayy! New best EMA pseudo Dice: 0.8884
797
+ 2024-08-30 09:41:56.418429:
798
+ 2024-08-30 09:41:56.419302: Epoch 910
799
+ 2024-08-30 09:41:56.420158: Current learning rate: 0.00115
800
+ 2024-08-30 09:42:49.296465: train_loss -0.8396
801
+ 2024-08-30 09:42:49.297770: val_loss -0.8364
802
+ 2024-08-30 09:42:49.298769: Pseudo dice [0.9266, 0.943, 0.9451, 0.9304, 0.9353, 0.9334, 0.9443, 0.9358, 0.9083, 0.9158, 0.8974, 0.8976, 0.8958, 0.8884, 0.8805, 0.8676, 0.8506, 0.0, 0.9446, nan, nan]
803
+ 2024-08-30 09:42:49.299514: Epoch time: 52.88 s
804
+ 2024-08-30 09:42:50.844342:
805
+ 2024-08-30 09:42:50.845278: Epoch 911
806
+ 2024-08-30 09:42:50.845987: Current learning rate: 0.00113
807
+ 2024-08-30 09:43:43.097344: train_loss -0.8408
808
+ 2024-08-30 09:43:43.099696: val_loss -0.8599
809
+ 2024-08-30 09:43:43.100677: Pseudo dice [0.9409, 0.9516, 0.9496, 0.9518, 0.9491, 0.9517, 0.9611, 0.9717, 0.9486, 0.9486, 0.9627, 0.9627, 0.9714, 0.9641, 0.9298, 0.8623, 0.8033, 0.0, 0.9354, nan, nan]
810
+ 2024-08-30 09:43:43.101291: Epoch time: 52.26 s
811
+ 2024-08-30 09:43:44.533529:
812
+ 2024-08-30 09:43:44.534385: Epoch 912
813
+ 2024-08-30 09:43:44.535038: Current learning rate: 0.00112
814
+ 2024-08-30 09:44:34.996822: train_loss -0.8517
815
+ 2024-08-30 09:44:34.998015: val_loss -0.8617
816
+ 2024-08-30 09:44:34.998905: Pseudo dice [0.943, 0.9519, 0.9501, 0.9613, 0.9655, 0.9678, 0.9643, 0.9611, 0.9606, 0.9492, 0.942, 0.9565, 0.9475, 0.9256, 0.9272, 0.9134, 0.8621, 0.0, 0.9564, nan, nan]
817
+ 2024-08-30 09:44:34.999667: Epoch time: 50.47 s
818
+ 2024-08-30 09:44:36.408237:
819
+ 2024-08-30 09:44:36.409230: Epoch 913
820
+ 2024-08-30 09:44:36.409955: Current learning rate: 0.00111
821
+ 2024-08-30 09:45:28.878945: train_loss -0.8486
822
+ 2024-08-30 09:45:28.881683: val_loss -0.8403
823
+ 2024-08-30 09:45:28.882527: Pseudo dice [0.9299, 0.9509, 0.9427, 0.9301, 0.9125, 0.8868, 0.8903, 0.8965, 0.8822, 0.8931, 0.9089, 0.9366, 0.9198, 0.9021, 0.9141, 0.9048, 0.8939, 0.0, 0.9509, nan, 0.0]
824
+ 2024-08-30 09:45:28.883183: Epoch time: 52.47 s
825
+ 2024-08-30 09:45:30.225083:
826
+ 2024-08-30 09:45:30.225914: Epoch 914
827
+ 2024-08-30 09:45:30.226596: Current learning rate: 0.0011
828
+ 2024-08-30 09:46:21.714068: train_loss -0.8507
829
+ 2024-08-30 09:46:21.715301: val_loss -0.8477
830
+ 2024-08-30 09:46:21.716247: Pseudo dice [0.93, 0.9427, 0.9337, 0.9243, 0.9162, 0.9224, 0.924, 0.8984, 0.8946, 0.9114, 0.8878, 0.8954, 0.9646, 0.9548, 0.9262, 0.9193, 0.9156, 0.0, 0.9416, nan, 0.0]
831
+ 2024-08-30 09:46:21.717107: Epoch time: 51.49 s
832
+ 2024-08-30 09:46:23.155884:
833
+ 2024-08-30 09:46:23.156791: Epoch 915
834
+ 2024-08-30 09:46:23.157521: Current learning rate: 0.00109
835
+ 2024-08-30 09:47:17.947239: train_loss -0.8474
836
+ 2024-08-30 09:47:17.949703: val_loss -0.8591
837
+ 2024-08-30 09:47:17.950529: Pseudo dice [0.9407, 0.9571, 0.9483, 0.947, 0.9568, 0.9628, 0.9556, 0.9411, 0.9132, 0.9306, 0.9651, 0.969, 0.9726, 0.9683, 0.9356, 0.8999, 0.8389, 0.0, 0.9438, nan, nan]
838
+ 2024-08-30 09:47:17.951321: Epoch time: 54.79 s
839
+ 2024-08-30 09:47:20.035912:
840
+ 2024-08-30 09:47:20.064198: Epoch 916
841
+ 2024-08-30 09:47:20.108490: Current learning rate: 0.00108
842
+ 2024-08-30 09:48:12.034337: train_loss -0.8468
843
+ 2024-08-30 09:48:12.035556: val_loss -0.8684
844
+ 2024-08-30 09:48:12.036769: Pseudo dice [0.9457, 0.9523, 0.9467, 0.9505, 0.9529, 0.9644, 0.9497, 0.9333, 0.934, 0.9413, 0.9452, 0.9597, 0.9665, 0.9701, 0.9652, 0.9567, 0.9102, 0.0, 0.9573, nan, 0.0]
845
+ 2024-08-30 09:48:12.037589: Epoch time: 52.0 s
846
+ 2024-08-30 09:48:13.400879:
847
+ 2024-08-30 09:48:13.401742: Epoch 917
848
+ 2024-08-30 09:48:13.402465: Current learning rate: 0.00106
849
+ 2024-08-30 09:49:05.424017: train_loss -0.842
850
+ 2024-08-30 09:49:05.426039: val_loss -0.8653
851
+ 2024-08-30 09:49:05.426991: Pseudo dice [0.923, 0.9549, 0.9529, 0.9535, 0.9501, 0.9481, 0.9586, 0.9605, 0.9647, 0.9662, 0.9659, 0.9611, 0.9658, 0.9694, 0.959, 0.9398, 0.9007, 0.0, 0.9568, nan, nan]
852
+ 2024-08-30 09:49:05.427838: Epoch time: 52.03 s
853
+ 2024-08-30 09:49:06.859180:
854
+ 2024-08-30 09:49:06.860131: Epoch 918
855
+ 2024-08-30 09:49:06.860854: Current learning rate: 0.00105
856
+ 2024-08-30 09:49:59.689979: train_loss -0.8431
857
+ 2024-08-30 09:49:59.692385: val_loss -0.8596
858
+ 2024-08-30 09:49:59.693380: Pseudo dice [0.9444, 0.9573, 0.9579, 0.9557, 0.9212, 0.9125, 0.9291, 0.945, 0.961, 0.9641, 0.955, 0.9588, 0.9684, 0.9568, 0.9043, 0.889, 0.8703, 0.0, 0.9561, nan, nan]
859
+ 2024-08-30 09:49:59.694192: Epoch time: 52.83 s
860
+ 2024-08-30 09:50:01.139813:
861
+ 2024-08-30 09:50:01.140732: Epoch 919
862
+ 2024-08-30 09:50:01.141433: Current learning rate: 0.00104
863
+ 2024-08-30 09:50:52.872537: train_loss -0.8485
864
+ 2024-08-30 09:50:52.874662: val_loss -0.8641
865
+ 2024-08-30 09:50:52.875826: Pseudo dice [0.9312, 0.9414, 0.9545, 0.9463, 0.9217, 0.9152, 0.9335, 0.9404, 0.9481, 0.9544, 0.9634, 0.9661, 0.9726, 0.9641, 0.9549, 0.9482, 0.9081, 0.0, 0.9539, nan, nan]
866
+ 2024-08-30 09:50:52.876757: Epoch time: 51.74 s
867
+ 2024-08-30 09:50:54.344548:
868
+ 2024-08-30 09:50:54.345468: Epoch 920
869
+ 2024-08-30 09:50:54.346212: Current learning rate: 0.00103
870
+ 2024-08-30 09:51:46.919124: train_loss -0.8516
871
+ 2024-08-30 09:51:47.050050: val_loss -0.8514
872
+ 2024-08-30 09:51:47.141948: Pseudo dice [0.9304, 0.9619, 0.9617, 0.9574, 0.953, 0.9654, 0.9728, 0.9746, 0.9669, 0.9523, 0.9483, 0.9447, 0.9217, 0.8759, 0.8593, 0.8695, 0.857, 0.0, 0.946, nan, nan]
873
+ 2024-08-30 09:51:47.169266: Epoch time: 52.58 s
874
+ 2024-08-30 09:51:48.569705:
875
+ 2024-08-30 09:51:48.589292: Epoch 921
876
+ 2024-08-30 09:51:48.589994: Current learning rate: 0.00102
877
+ 2024-08-30 09:52:41.788446: train_loss -0.8457
878
+ 2024-08-30 09:52:41.790469: val_loss -0.8683
879
+ 2024-08-30 09:52:41.791498: Pseudo dice [0.9368, 0.955, 0.9573, 0.9629, 0.9651, 0.9514, 0.9302, 0.9205, 0.9281, 0.9265, 0.9274, 0.9183, 0.9399, 0.946, 0.9521, 0.9707, 0.9617, nan, 0.9598, nan, nan]
880
+ 2024-08-30 09:52:41.792266: Epoch time: 53.22 s
881
+ 2024-08-30 09:52:43.170865:
882
+ 2024-08-30 09:52:43.171814: Epoch 922
883
+ 2024-08-30 09:52:43.172486: Current learning rate: 0.00101
884
+ 2024-08-30 09:53:36.126686: train_loss -0.8445
885
+ 2024-08-30 09:53:36.127753: val_loss -0.8666
886
+ 2024-08-30 09:53:36.128754: Pseudo dice [0.9288, 0.9428, 0.9474, 0.9483, 0.9434, 0.9349, 0.9364, 0.9442, 0.9444, 0.939, 0.939, 0.9428, 0.955, 0.967, 0.9688, 0.9616, 0.9327, 0.0, 0.951, nan, nan]
887
+ 2024-08-30 09:53:36.129586: Epoch time: 52.96 s
888
+ 2024-08-30 09:53:36.130816: Yayy! New best EMA pseudo Dice: 0.8885
889
+ 2024-08-30 09:53:39.801655:
890
+ 2024-08-30 09:53:39.802550: Epoch 923
891
+ 2024-08-30 09:53:39.803259: Current learning rate: 0.001
892
+ 2024-08-30 09:54:33.398716: train_loss -0.8484
893
+ 2024-08-30 09:54:33.401361: val_loss -0.8515
894
+ 2024-08-30 09:54:33.402522: Pseudo dice [0.8997, 0.9143, 0.9175, 0.9186, 0.9427, 0.9346, 0.9287, 0.9462, 0.9505, 0.9428, 0.9277, 0.9285, 0.8983, 0.8973, 0.9088, 0.9193, 0.9334, nan, 0.9575, nan, 0.0]
895
+ 2024-08-30 09:54:33.403441: Epoch time: 53.6 s
896
+ 2024-08-30 09:54:34.808954:
897
+ 2024-08-30 09:54:34.809764: Epoch 924
898
+ 2024-08-30 09:54:34.810424: Current learning rate: 0.00098
899
+ 2024-08-30 09:55:28.088682: train_loss -0.8511
900
+ 2024-08-30 09:55:28.090126: val_loss -0.8449
901
+ 2024-08-30 09:55:28.091139: Pseudo dice [0.9267, 0.9525, 0.954, 0.9556, 0.967, 0.9433, 0.923, 0.9156, 0.909, 0.916, 0.9098, 0.9217, 0.9491, 0.9631, 0.9363, 0.8794, 0.8242, 0.0, 0.9476, nan, nan]
902
+ 2024-08-30 09:55:28.091930: Epoch time: 53.28 s
903
+ 2024-08-30 09:55:29.546050:
904
+ 2024-08-30 09:55:29.546935: Epoch 925
905
+ 2024-08-30 09:55:29.547622: Current learning rate: 0.00097
906
+ 2024-08-30 09:56:20.578186: train_loss -0.8467
907
+ 2024-08-30 09:56:20.580002: val_loss -0.8509
908
+ 2024-08-30 09:56:20.580908: Pseudo dice [0.897, 0.9127, 0.9111, 0.9206, 0.9238, 0.9235, 0.9344, 0.9569, 0.9414, 0.9223, 0.9145, 0.9139, 0.9645, 0.9502, 0.9306, 0.9167, 0.875, 0.0, 0.9509, nan, 0.0]
909
+ 2024-08-30 09:56:20.581635: Epoch time: 51.04 s
910
+ 2024-08-30 09:56:22.278639:
911
+ 2024-08-30 09:56:22.279523: Epoch 926
912
+ 2024-08-30 09:56:22.280306: Current learning rate: 0.00096
913
+ 2024-08-30 09:57:17.439591: train_loss -0.8471
914
+ 2024-08-30 09:57:17.441475: val_loss -0.858
915
+ 2024-08-30 09:57:17.442336: Pseudo dice [0.9342, 0.9531, 0.955, 0.9623, 0.9609, 0.9706, 0.9524, 0.9177, 0.9257, 0.9353, 0.9205, 0.9225, 0.9538, 0.947, 0.9409, 0.9246, 0.9254, 0.0, 0.9634, nan, 0.0]
916
+ 2024-08-30 09:57:17.443338: Epoch time: 55.16 s
917
+ 2024-08-30 09:57:18.847193:
918
+ 2024-08-30 09:57:18.848045: Epoch 927
919
+ 2024-08-30 09:57:18.848760: Current learning rate: 0.00095
920
+ 2024-08-30 09:58:12.705588: train_loss -0.835
921
+ 2024-08-30 09:58:12.707983: val_loss -0.8488
922
+ 2024-08-30 09:58:12.709411: Pseudo dice [0.9369, 0.9562, 0.9525, 0.9439, 0.9239, 0.9238, 0.933, 0.9301, 0.9272, 0.936, 0.9399, 0.9489, 0.9658, 0.937, 0.8944, 0.8545, 0.8314, 0.0, 0.937, nan, nan]
923
+ 2024-08-30 09:58:12.710254: Epoch time: 53.86 s
924
+ 2024-08-30 09:58:14.085509:
925
+ 2024-08-30 09:58:14.086400: Epoch 928
926
+ 2024-08-30 09:58:14.087110: Current learning rate: 0.00094
927
+ 2024-08-30 09:59:08.547267: train_loss -0.8446
928
+ 2024-08-30 09:59:08.548403: val_loss -0.8622
929
+ 2024-08-30 09:59:08.549146: Pseudo dice [0.9348, 0.9537, 0.9508, 0.9588, 0.9615, 0.9586, 0.957, 0.9564, 0.9631, 0.9582, 0.9505, 0.9516, 0.9662, 0.941, 0.9272, 0.9393, 0.9324, 0.0, 0.9551, nan, nan]
930
+ 2024-08-30 09:59:08.549765: Epoch time: 54.46 s
931
+ 2024-08-30 09:59:10.562996:
932
+ 2024-08-30 09:59:10.563841: Epoch 929
933
+ 2024-08-30 09:59:10.564563: Current learning rate: 0.00092
934
+ 2024-08-30 10:00:07.417935: train_loss -0.8513
935
+ 2024-08-30 10:00:07.420214: val_loss -0.847
936
+ 2024-08-30 10:00:07.421000: Pseudo dice [0.9407, 0.9197, 0.9079, 0.9191, 0.9232, 0.9127, 0.9074, 0.9006, 0.8912, 0.9228, 0.9414, 0.9477, 0.9045, 0.8925, 0.8886, 0.859, 0.8429, 0.0, 0.952, nan, 0.0]
937
+ 2024-08-30 10:00:07.421667: Epoch time: 56.86 s
938
+ 2024-08-30 10:00:08.787585:
939
+ 2024-08-30 10:00:08.788558: Epoch 930
940
+ 2024-08-30 10:00:08.789189: Current learning rate: 0.00091
941
+ 2024-08-30 10:01:01.196343: train_loss -0.8495
942
+ 2024-08-30 10:01:01.197545: val_loss -0.8592
943
+ 2024-08-30 10:01:01.198351: Pseudo dice [0.9444, 0.9518, 0.9453, 0.9306, 0.9506, 0.9457, 0.9509, 0.9376, 0.9328, 0.9368, 0.9286, 0.9335, 0.9487, 0.9432, 0.9172, 0.9221, 0.905, 0.0, 0.9579, nan, nan]
944
+ 2024-08-30 10:01:01.199045: Epoch time: 52.41 s
945
+ 2024-08-30 10:01:02.768086:
946
+ 2024-08-30 10:01:02.768924: Epoch 931
947
+ 2024-08-30 10:01:02.769610: Current learning rate: 0.0009
948
+ 2024-08-30 10:01:55.521782: train_loss -0.8537
949
+ 2024-08-30 10:01:55.524310: val_loss -0.8603
950
+ 2024-08-30 10:01:55.525145: Pseudo dice [0.9412, 0.9493, 0.9577, 0.9637, 0.9387, 0.9095, 0.9091, 0.9166, 0.9083, 0.9041, 0.9196, 0.9138, 0.9356, 0.9538, 0.944, 0.9366, 0.9278, nan, 0.9592, nan, nan]
951
+ 2024-08-30 10:01:55.526204: Epoch time: 52.76 s
952
+ 2024-08-30 10:01:56.917265:
953
+ 2024-08-30 10:01:56.918360: Epoch 932
954
+ 2024-08-30 10:01:56.919020: Current learning rate: 0.00089
955
+ 2024-08-30 10:02:50.055418: train_loss -0.8415
956
+ 2024-08-30 10:02:50.056636: val_loss -0.8556
957
+ 2024-08-30 10:02:50.057668: Pseudo dice [0.9323, 0.9378, 0.9381, 0.9547, 0.957, 0.9645, 0.963, 0.9492, 0.9467, 0.9584, 0.9704, 0.9722, 0.9571, 0.9301, 0.8894, 0.8112, 0.7112, 0.0, 0.9598, nan, nan]
958
+ 2024-08-30 10:02:50.058403: Epoch time: 53.14 s
959
+ 2024-08-30 10:02:51.538301:
960
+ 2024-08-30 10:02:51.539323: Epoch 933
961
+ 2024-08-30 10:02:51.540074: Current learning rate: 0.00088
962
+ 2024-08-30 10:03:42.849202: train_loss -0.8494
963
+ 2024-08-30 10:03:42.851120: val_loss -0.8589
964
+ 2024-08-30 10:03:42.851995: Pseudo dice [0.9421, 0.9578, 0.952, 0.9497, 0.9338, 0.9144, 0.9034, 0.9141, 0.9011, 0.8926, 0.8806, 0.8981, 0.9358, 0.9459, 0.95, 0.9464, 0.9092, 0.0, 0.9503, nan, 0.0]
965
+ 2024-08-30 10:03:42.852779: Epoch time: 51.31 s
966
+ 2024-08-30 10:03:44.188414:
967
+ 2024-08-30 10:03:44.189330: Epoch 934
968
+ 2024-08-30 10:03:44.190004: Current learning rate: 0.00087
969
+ 2024-08-30 10:04:36.412654: train_loss -0.8525
970
+ 2024-08-30 10:04:36.414294: val_loss -0.8557
971
+ 2024-08-30 10:04:36.415700: Pseudo dice [0.898, 0.9104, 0.9188, 0.9263, 0.9027, 0.9003, 0.9326, 0.9562, 0.9608, 0.9633, 0.9462, 0.9462, 0.9568, 0.9351, 0.9318, 0.925, 0.8876, 0.0, 0.9538, nan, nan]
972
+ 2024-08-30 10:04:36.416319: Epoch time: 52.23 s
973
+ 2024-08-30 10:04:38.010796:
974
+ 2024-08-30 10:04:38.011621: Epoch 935
975
+ 2024-08-30 10:04:38.012287: Current learning rate: 0.00085
976
+ 2024-08-30 10:05:31.319292: train_loss -0.845
977
+ 2024-08-30 10:05:31.321297: val_loss -0.8617
978
+ 2024-08-30 10:05:31.322178: Pseudo dice [0.9201, 0.9441, 0.9469, 0.9533, 0.9553, 0.9651, 0.9658, 0.9542, 0.9534, 0.953, 0.9597, 0.9705, 0.9708, 0.9728, 0.9694, 0.9424, 0.8878, 0.0, 0.9479, nan, nan]
979
+ 2024-08-30 10:05:31.322860: Epoch time: 53.31 s
980
+ 2024-08-30 10:05:32.736392:
981
+ 2024-08-30 10:05:32.737269: Epoch 936
982
+ 2024-08-30 10:05:32.737977: Current learning rate: 0.00084
983
+ 2024-08-30 10:06:25.349432: train_loss -0.8485
984
+ 2024-08-30 10:06:25.350676: val_loss -0.8688
985
+ 2024-08-30 10:06:25.351754: Pseudo dice [0.9399, 0.9506, 0.9487, 0.9533, 0.9548, 0.9631, 0.9571, 0.9414, 0.9548, 0.9739, 0.9745, 0.9736, 0.9703, 0.9209, 0.9098, 0.9307, 0.9211, 0.0, 0.9639, nan, nan]
986
+ 2024-08-30 10:06:25.352515: Epoch time: 52.62 s
987
+ 2024-08-30 10:06:27.018242:
988
+ 2024-08-30 10:06:27.019112: Epoch 937
989
+ 2024-08-30 10:06:27.019696: Current learning rate: 0.00083
990
+ 2024-08-30 10:07:17.556547: train_loss -0.8495
991
+ 2024-08-30 10:07:17.560977: val_loss -0.8565
992
+ 2024-08-30 10:07:17.561835: Pseudo dice [0.9357, 0.9529, 0.9492, 0.9554, 0.9551, 0.9555, 0.9568, 0.9557, 0.954, 0.9616, 0.9713, 0.9707, 0.9661, 0.9526, 0.9377, 0.9244, 0.875, 0.0, 0.9574, nan, nan]
993
+ 2024-08-30 10:07:17.562643: Epoch time: 50.54 s
994
+ 2024-08-30 10:07:19.018479:
995
+ 2024-08-30 10:07:19.019373: Epoch 938
996
+ 2024-08-30 10:07:19.020112: Current learning rate: 0.00082
997
+ 2024-08-30 10:08:10.795385: train_loss -0.8497
998
+ 2024-08-30 10:08:10.796620: val_loss -0.8659
999
+ 2024-08-30 10:08:10.797538: Pseudo dice [0.947, 0.9601, 0.9543, 0.9229, 0.8806, 0.8887, 0.902, 0.9312, 0.9388, 0.9307, 0.9311, 0.9564, 0.975, 0.9585, 0.9433, 0.9293, 0.9085, 0.0, 0.962, nan, nan]
1000
+ 2024-08-30 10:08:10.798293: Epoch time: 51.78 s
1001
+ 2024-08-30 10:08:12.109109:
1002
+ 2024-08-30 10:08:12.110064: Epoch 939
1003
+ 2024-08-30 10:08:12.111285: Current learning rate: 0.00081
1004
+ 2024-08-30 10:09:05.459191: train_loss -0.8513
1005
+ 2024-08-30 10:09:05.461498: val_loss -0.8631
1006
+ 2024-08-30 10:09:05.462358: Pseudo dice [0.9396, 0.9531, 0.9499, 0.9481, 0.9592, 0.9571, 0.9458, 0.9453, 0.9477, 0.9393, 0.9074, 0.9308, 0.9717, 0.9697, 0.9644, 0.9672, 0.9457, 0.0, 0.9591, nan, nan]
1007
+ 2024-08-30 10:09:05.463133: Epoch time: 53.35 s
1008
+ 2024-08-30 10:09:06.766939:
1009
+ 2024-08-30 10:09:06.767855: Epoch 940
1010
+ 2024-08-30 10:09:06.768591: Current learning rate: 0.00079
1011
+ 2024-08-30 10:10:00.599563: train_loss -0.8483
1012
+ 2024-08-30 10:10:00.600801: val_loss -0.8512
1013
+ 2024-08-30 10:10:00.601717: Pseudo dice [0.9324, 0.9517, 0.9488, 0.9508, 0.9469, 0.9442, 0.9477, 0.9416, 0.9403, 0.9358, 0.9401, 0.9398, 0.9471, 0.9298, 0.9133, 0.9053, 0.8635, 0.0, 0.9542, nan, nan]
1014
+ 2024-08-30 10:10:00.602605: Epoch time: 53.84 s
1015
+ 2024-08-30 10:10:01.960508:
1016
+ 2024-08-30 10:10:01.961484: Epoch 941
1017
+ 2024-08-30 10:10:01.963042: Current learning rate: 0.00078
1018
+ 2024-08-30 10:10:55.619714: train_loss -0.8418
1019
+ 2024-08-30 10:10:55.621739: val_loss -0.8536
1020
+ 2024-08-30 10:10:55.623024: Pseudo dice [0.9313, 0.9371, 0.9095, 0.9275, 0.9525, 0.9471, 0.9326, 0.9257, 0.9455, 0.9546, 0.9468, 0.9524, 0.9538, 0.9208, 0.8967, 0.9093, 0.9048, 0.0, 0.9623, nan, nan]
1021
+ 2024-08-30 10:10:55.623796: Epoch time: 53.66 s
1022
+ 2024-08-30 10:10:57.169628:
1023
+ 2024-08-30 10:10:57.170497: Epoch 942
1024
+ 2024-08-30 10:10:57.171117: Current learning rate: 0.00077
1025
+ 2024-08-30 10:11:50.687285: train_loss -0.8446
1026
+ 2024-08-30 10:11:50.689352: val_loss -0.8614
1027
+ 2024-08-30 10:11:50.690510: Pseudo dice [0.9353, 0.9151, 0.8989, 0.9208, 0.9384, 0.9407, 0.9502, 0.9572, 0.9437, 0.9392, 0.9362, 0.9302, 0.9763, 0.9756, 0.9776, 0.9761, 0.9484, nan, 0.9563, nan, 0.0]
1028
+ 2024-08-30 10:11:50.691401: Epoch time: 53.52 s
1029
+ 2024-08-30 10:11:52.028788:
1030
+ 2024-08-30 10:11:52.029699: Epoch 943
1031
+ 2024-08-30 10:11:52.030868: Current learning rate: 0.00076
1032
+ 2024-08-30 10:12:44.592405: train_loss -0.8482
1033
+ 2024-08-30 10:12:44.594781: val_loss -0.8415
1034
+ 2024-08-30 10:12:44.595926: Pseudo dice [0.936, 0.9144, 0.8553, 0.8094, 0.8132, 0.8317, 0.8481, 0.867, 0.8431, 0.8296, 0.8696, 0.9108, 0.9678, 0.9529, 0.9487, 0.9601, 0.9371, 0.0, 0.9445, nan, 0.0]
1035
+ 2024-08-30 10:12:44.597034: Epoch time: 52.57 s
1036
+ 2024-08-30 10:12:45.926375:
1037
+ 2024-08-30 10:12:45.927188: Epoch 944
1038
+ 2024-08-30 10:12:45.927808: Current learning rate: 0.00075
1039
+ 2024-08-30 10:13:38.911172: train_loss -0.8484
1040
+ 2024-08-30 10:13:38.912382: val_loss -0.8621
1041
+ 2024-08-30 10:13:38.913141: Pseudo dice [0.942, 0.9591, 0.9562, 0.9496, 0.9505, 0.9673, 0.9708, 0.9698, 0.9483, 0.9332, 0.9397, 0.9332, 0.9444, 0.9698, 0.9592, 0.9467, 0.9292, 0.0, 0.9606, nan, nan]
1042
+ 2024-08-30 10:13:38.913756: Epoch time: 52.99 s
1043
+ 2024-08-30 10:13:40.294965:
1044
+ 2024-08-30 10:13:40.295834: Epoch 945
1045
+ 2024-08-30 10:13:40.296935: Current learning rate: 0.00074
1046
+ 2024-08-30 10:14:31.573598: train_loss -0.8465
1047
+ 2024-08-30 10:14:31.575586: val_loss -0.8651
1048
+ 2024-08-30 10:14:31.576441: Pseudo dice [0.9389, 0.9581, 0.9415, 0.9293, 0.9294, 0.9374, 0.9554, 0.9534, 0.9519, 0.9529, 0.9394, 0.937, 0.9609, 0.9627, 0.9668, 0.9657, 0.9276, 0.0, 0.9481, nan, nan]
1049
+ 2024-08-30 10:14:31.577214: Epoch time: 51.28 s
1050
+ 2024-08-30 10:14:32.872183:
1051
+ 2024-08-30 10:14:32.873069: Epoch 946
1052
+ 2024-08-30 10:14:32.873809: Current learning rate: 0.00072
1053
+ 2024-08-30 10:15:23.738815: train_loss -0.8518
1054
+ 2024-08-30 10:15:23.740160: val_loss -0.8489
1055
+ 2024-08-30 10:15:23.741539: Pseudo dice [0.9433, 0.9538, 0.9368, 0.9441, 0.9668, 0.9477, 0.9269, 0.9266, 0.9073, 0.8988, 0.9023, 0.8886, 0.9207, 0.9466, 0.9653, 0.9378, 0.8964, 0.0, 0.9341, nan, nan]
1056
+ 2024-08-30 10:15:23.742865: Epoch time: 50.87 s
1057
+ 2024-08-30 10:15:25.223688:
1058
+ 2024-08-30 10:15:25.225006: Epoch 947
1059
+ 2024-08-30 10:15:25.225703: Current learning rate: 0.00071
1060
+ 2024-08-30 10:16:17.235266: train_loss -0.8482
1061
+ 2024-08-30 10:16:17.237830: val_loss -0.8527
1062
+ 2024-08-30 10:16:17.238741: Pseudo dice [0.9489, 0.9583, 0.9581, 0.9618, 0.9507, 0.9305, 0.9245, 0.9277, 0.9346, 0.9362, 0.9359, 0.9237, 0.95, 0.9412, 0.9226, 0.9141, 0.8771, 0.0, 0.9424, nan, 0.0]
1063
+ 2024-08-30 10:16:17.239523: Epoch time: 52.01 s
1064
+ 2024-08-30 10:16:18.688260:
1065
+ 2024-08-30 10:16:18.689226: Epoch 948
1066
+ 2024-08-30 10:16:18.689977: Current learning rate: 0.0007
1067
+ 2024-08-30 10:17:10.591592: train_loss -0.8459
1068
+ 2024-08-30 10:17:10.592764: val_loss -0.8723
1069
+ 2024-08-30 10:17:10.593572: Pseudo dice [0.9477, 0.9599, 0.9539, 0.961, 0.9535, 0.9472, 0.9611, 0.9546, 0.9446, 0.9533, 0.9679, 0.9669, 0.972, 0.9611, 0.9489, 0.9493, 0.9316, nan, 0.9558, nan, nan]
1070
+ 2024-08-30 10:17:10.595065: Epoch time: 51.91 s
1071
+ 2024-08-30 10:17:12.050292:
1072
+ 2024-08-30 10:17:12.051152: Epoch 949
1073
+ 2024-08-30 10:17:12.051842: Current learning rate: 0.00069
1074
+ 2024-08-30 10:18:04.503434: train_loss -0.8511
1075
+ 2024-08-30 10:18:04.505441: val_loss -0.8623
1076
+ 2024-08-30 10:18:04.506627: Pseudo dice [0.9348, 0.9528, 0.9361, 0.9381, 0.94, 0.9376, 0.953, 0.9522, 0.9423, 0.9401, 0.9352, 0.9533, 0.9705, 0.9692, 0.9558, 0.9346, 0.8951, 0.0, 0.9522, nan, nan]
1077
+ 2024-08-30 10:18:04.507421: Epoch time: 52.46 s
1078
+ 2024-08-30 10:18:08.332660:
1079
+ 2024-08-30 10:18:08.333610: Epoch 950
1080
+ 2024-08-30 10:18:08.334377: Current learning rate: 0.00067
1081
+ 2024-08-30 10:18:58.365385: train_loss -0.8504
1082
+ 2024-08-30 10:18:58.366978: val_loss -0.8706
1083
+ 2024-08-30 10:18:58.367857: Pseudo dice [0.9368, 0.9528, 0.955, 0.9555, 0.957, 0.9679, 0.9657, 0.9605, 0.9534, 0.9609, 0.972, 0.971, 0.9625, 0.9421, 0.9312, 0.943, 0.9552, nan, 0.9642, nan, nan]
1084
+ 2024-08-30 10:18:58.368901: Epoch time: 50.04 s
1085
+ 2024-08-30 10:18:58.370017: Yayy! New best EMA pseudo Dice: 0.8934
1086
+ 2024-08-30 10:19:02.179308:
1087
+ 2024-08-30 10:19:02.180123: Epoch 951
1088
+ 2024-08-30 10:19:02.180810: Current learning rate: 0.00066
1089
+ 2024-08-30 10:19:54.884330: train_loss -0.8495
1090
+ 2024-08-30 10:19:54.886884: val_loss -0.8577
1091
+ 2024-08-30 10:19:54.888390: Pseudo dice [0.9374, 0.9279, 0.9047, 0.9259, 0.9199, 0.9153, 0.914, 0.9093, 0.8888, 0.896, 0.9074, 0.9266, 0.9699, 0.9726, 0.9751, 0.9716, 0.9423, 0.0, 0.9379, nan, 0.0]
1092
+ 2024-08-30 10:19:54.889423: Epoch time: 52.71 s
1093
+ 2024-08-30 10:19:56.320306:
1094
+ 2024-08-30 10:19:56.321118: Epoch 952
1095
+ 2024-08-30 10:19:56.321761: Current learning rate: 0.00065
1096
+ 2024-08-30 10:20:50.129279: train_loss -0.8535
1097
+ 2024-08-30 10:20:50.132541: val_loss -0.8661
1098
+ 2024-08-30 10:20:50.133902: Pseudo dice [0.9408, 0.9576, 0.9585, 0.9653, 0.9425, 0.9266, 0.93, 0.9352, 0.9346, 0.9343, 0.9364, 0.9454, 0.9632, 0.9652, 0.9092, 0.865, 0.8257, 0.0, 0.9382, nan, nan]
1099
+ 2024-08-30 10:20:50.135259: Epoch time: 53.81 s
1100
+ 2024-08-30 10:20:51.537604:
1101
+ 2024-08-30 10:20:51.538487: Epoch 953
1102
+ 2024-08-30 10:20:51.539279: Current learning rate: 0.00064
1103
+ 2024-08-30 10:21:45.772618: train_loss -0.8468
1104
+ 2024-08-30 10:21:45.774719: val_loss -0.8624
1105
+ 2024-08-30 10:21:45.775752: Pseudo dice [0.9431, 0.9498, 0.9357, 0.9299, 0.9372, 0.9245, 0.928, 0.9424, 0.9433, 0.946, 0.9426, 0.9343, 0.9528, 0.9536, 0.9578, 0.9525, 0.9319, 0.0, 0.9445, nan, 0.0]
1106
+ 2024-08-30 10:21:45.776482: Epoch time: 54.24 s
1107
+ 2024-08-30 10:21:47.152239:
1108
+ 2024-08-30 10:21:47.153165: Epoch 954
1109
+ 2024-08-30 10:21:47.153802: Current learning rate: 0.00063
1110
+ 2024-08-30 10:22:37.036758: train_loss -0.8478
1111
+ 2024-08-30 10:22:37.038927: val_loss -0.8647
1112
+ 2024-08-30 10:22:37.040422: Pseudo dice [0.9471, 0.9597, 0.9566, 0.961, 0.9667, 0.9687, 0.9667, 0.9666, 0.972, 0.9698, 0.9631, 0.9627, 0.9761, 0.9688, 0.9384, 0.8997, 0.8372, 0.0, 0.9544, nan, nan]
1113
+ 2024-08-30 10:22:37.042530: Epoch time: 49.89 s
1114
+ 2024-08-30 10:22:39.197179:
1115
+ 2024-08-30 10:22:39.198064: Epoch 955
1116
+ 2024-08-30 10:22:39.198757: Current learning rate: 0.00061
1117
+ 2024-08-30 10:23:32.983045: train_loss -0.8514
1118
+ 2024-08-30 10:23:32.984947: val_loss -0.8497
1119
+ 2024-08-30 10:23:32.985809: Pseudo dice [0.9417, 0.9458, 0.9277, 0.9272, 0.9095, 0.8993, 0.8906, 0.8902, 0.8748, 0.8802, 0.8889, 0.9122, 0.9483, 0.9236, 0.9233, 0.9228, 0.8949, 0.0, 0.9582, nan, nan]
1120
+ 2024-08-30 10:23:32.986533: Epoch time: 53.79 s
1121
+ 2024-08-30 10:23:34.411091:
1122
+ 2024-08-30 10:23:34.412478: Epoch 956
1123
+ 2024-08-30 10:23:34.413252: Current learning rate: 0.0006
1124
+ 2024-08-30 10:24:25.120140: train_loss -0.8509
1125
+ 2024-08-30 10:24:25.122234: val_loss -0.8607
1126
+ 2024-08-30 10:24:25.123515: Pseudo dice [0.9355, 0.9569, 0.9581, 0.956, 0.9607, 0.9507, 0.9372, 0.9236, 0.9172, 0.9216, 0.92, 0.9142, 0.9196, 0.9479, 0.9709, 0.9716, 0.9498, nan, 0.9579, nan, nan]
1127
+ 2024-08-30 10:24:25.124424: Epoch time: 50.71 s
1128
+ 2024-08-30 10:24:26.560558:
1129
+ 2024-08-30 10:24:26.561507: Epoch 957
1130
+ 2024-08-30 10:24:26.562325: Current learning rate: 0.00059
1131
+ 2024-08-30 10:25:18.697950: train_loss -0.8523
1132
+ 2024-08-30 10:25:18.699968: val_loss -0.8638
1133
+ 2024-08-30 10:25:18.701277: Pseudo dice [0.9488, 0.9585, 0.9532, 0.9477, 0.9519, 0.9542, 0.9468, 0.9408, 0.9509, 0.9569, 0.952, 0.9572, 0.9749, 0.9708, 0.9532, 0.9316, 0.8887, 0.0, 0.9573, nan, nan]
1134
+ 2024-08-30 10:25:18.702055: Epoch time: 52.14 s
1135
+ 2024-08-30 10:25:20.114854:
1136
+ 2024-08-30 10:25:20.115787: Epoch 958
1137
+ 2024-08-30 10:25:20.116835: Current learning rate: 0.00058
1138
+ 2024-08-30 10:26:16.232098: train_loss -0.8528
1139
+ 2024-08-30 10:26:16.234014: val_loss -0.8627
1140
+ 2024-08-30 10:26:16.235000: Pseudo dice [0.9405, 0.951, 0.9565, 0.9631, 0.9693, 0.9697, 0.9625, 0.9524, 0.9215, 0.9027, 0.9065, 0.9178, 0.9741, 0.958, 0.9463, 0.9399, 0.9012, 0.0, 0.961, nan, 0.0]
1141
+ 2024-08-30 10:26:16.235769: Epoch time: 56.12 s
1142
+ 2024-08-30 10:26:17.819944:
1143
+ 2024-08-30 10:26:17.820786: Epoch 959
1144
+ 2024-08-30 10:26:17.821509: Current learning rate: 0.00056
1145
+ 2024-08-30 10:27:11.785599: train_loss -0.8528
1146
+ 2024-08-30 10:27:11.787754: val_loss -0.8548
1147
+ 2024-08-30 10:27:11.788694: Pseudo dice [0.9354, 0.9556, 0.9546, 0.9597, 0.9667, 0.9674, 0.9668, 0.9666, 0.9609, 0.9453, 0.9371, 0.9278, 0.9338, 0.9075, 0.9006, 0.9045, 0.9078, 0.0, 0.9586, nan, 0.0]
1148
+ 2024-08-30 10:27:11.789490: Epoch time: 53.97 s
1149
+ 2024-08-30 10:27:13.205766:
1150
+ 2024-08-30 10:27:13.206791: Epoch 960
1151
+ 2024-08-30 10:27:13.207520: Current learning rate: 0.00055
1152
+ 2024-08-30 10:28:03.886426: train_loss -0.8516
1153
+ 2024-08-30 10:28:03.888169: val_loss -0.8626
1154
+ 2024-08-30 10:28:03.889139: Pseudo dice [0.9472, 0.9578, 0.9634, 0.9636, 0.963, 0.9673, 0.9643, 0.9611, 0.9578, 0.9668, 0.9577, 0.9583, 0.9769, 0.9593, 0.9384, 0.9226, 0.8688, 0.0, 0.9635, nan, 0.0]
1155
+ 2024-08-30 10:28:03.889918: Epoch time: 50.68 s
1156
+ 2024-08-30 10:28:05.554668:
1157
+ 2024-08-30 10:28:05.555649: Epoch 961
1158
+ 2024-08-30 10:28:05.556334: Current learning rate: 0.00054
1159
+ 2024-08-30 10:28:56.406420: train_loss -0.8509
1160
+ 2024-08-30 10:28:56.408435: val_loss -0.865
1161
+ 2024-08-30 10:28:56.409498: Pseudo dice [0.9393, 0.9537, 0.9568, 0.9603, 0.9462, 0.9466, 0.9639, 0.9547, 0.9497, 0.9518, 0.9599, 0.9745, 0.9762, 0.9508, 0.9305, 0.9266, 0.9018, 0.0, 0.9513, nan, nan]
1162
+ 2024-08-30 10:28:56.410274: Epoch time: 50.85 s
1163
+ 2024-08-30 10:28:57.787627:
1164
+ 2024-08-30 10:28:57.788509: Epoch 962
1165
+ 2024-08-30 10:28:57.789255: Current learning rate: 0.00053
1166
+ 2024-08-30 10:29:50.047581: train_loss -0.8475
1167
+ 2024-08-30 10:29:50.069606: val_loss -0.8617
1168
+ 2024-08-30 10:29:50.070552: Pseudo dice [0.9431, 0.9537, 0.9611, 0.9603, 0.9618, 0.9615, 0.9668, 0.9719, 0.9749, 0.9735, 0.951, 0.9393, 0.9506, 0.9258, 0.8976, 0.886, 0.8648, 0.0, 0.9555, nan, nan]
1169
+ 2024-08-30 10:29:50.071630: Epoch time: 52.26 s
1170
+ 2024-08-30 10:29:51.671604:
1171
+ 2024-08-30 10:29:51.672522: Epoch 963
1172
+ 2024-08-30 10:29:51.673182: Current learning rate: 0.00051
1173
+ 2024-08-30 10:30:47.847667: train_loss -0.8439
1174
+ 2024-08-30 10:30:47.849686: val_loss -0.8609
1175
+ 2024-08-30 10:30:47.850615: Pseudo dice [0.9255, 0.9272, 0.9185, 0.9198, 0.9233, 0.9346, 0.9349, 0.9366, 0.9476, 0.9637, 0.9615, 0.9644, 0.963, 0.9656, 0.9522, 0.9402, 0.8983, 0.0, 0.9443, nan, 0.0]
1176
+ 2024-08-30 10:30:47.851458: Epoch time: 56.18 s
1177
+ 2024-08-30 10:30:49.205772:
1178
+ 2024-08-30 10:30:49.206768: Epoch 964
1179
+ 2024-08-30 10:30:49.207551: Current learning rate: 0.0005
1180
+ 2024-08-30 10:31:39.172107: train_loss -0.8554
1181
+ 2024-08-30 10:31:39.174134: val_loss -0.8646
1182
+ 2024-08-30 10:31:39.175307: Pseudo dice [0.9501, 0.9612, 0.9612, 0.9636, 0.9571, 0.9479, 0.9443, 0.9442, 0.9453, 0.941, 0.9372, 0.9385, 0.9616, 0.9487, 0.951, 0.9487, 0.9177, 0.0, 0.9416, nan, 0.0]
1183
+ 2024-08-30 10:31:39.177831: Epoch time: 49.97 s
1184
+ 2024-08-30 10:31:40.590867:
1185
+ 2024-08-30 10:31:40.591808: Epoch 965
1186
+ 2024-08-30 10:31:40.592421: Current learning rate: 0.00049
1187
+ 2024-08-30 10:32:33.608516: train_loss -0.8513
1188
+ 2024-08-30 10:32:33.610365: val_loss -0.8555
1189
+ 2024-08-30 10:32:33.611141: Pseudo dice [0.9339, 0.9336, 0.9374, 0.9543, 0.9635, 0.9545, 0.9334, 0.9245, 0.9256, 0.9326, 0.9357, 0.9326, 0.9589, 0.9568, 0.9721, 0.9653, 0.9163, 0.0, 0.9506, nan, 0.0]
1190
+ 2024-08-30 10:32:33.611813: Epoch time: 53.02 s
1191
+ 2024-08-30 10:32:34.942311:
1192
+ 2024-08-30 10:32:34.943221: Epoch 966
1193
+ 2024-08-30 10:32:34.944027: Current learning rate: 0.00048
1194
+ 2024-08-30 10:33:28.128527: train_loss -0.8563
1195
+ 2024-08-30 10:33:28.130756: val_loss -0.8634
1196
+ 2024-08-30 10:33:28.131817: Pseudo dice [0.9453, 0.9552, 0.9565, 0.9553, 0.965, 0.9665, 0.9683, 0.9665, 0.9685, 0.9705, 0.9719, 0.9666, 0.9477, 0.931, 0.9283, 0.9128, 0.8518, 0.0, 0.9563, nan, nan]
1197
+ 2024-08-30 10:33:28.132555: Epoch time: 53.19 s
1198
+ 2024-08-30 10:33:29.519173:
1199
+ 2024-08-30 10:33:29.519992: Epoch 967
1200
+ 2024-08-30 10:33:29.520659: Current learning rate: 0.00046
1201
+ 2024-08-30 10:34:18.766661: train_loss -0.8448
1202
+ 2024-08-30 10:34:18.769221: val_loss -0.8632
1203
+ 2024-08-30 10:34:18.770272: Pseudo dice [0.9457, 0.9606, 0.9631, 0.9632, 0.9679, 0.9677, 0.9682, 0.965, 0.9589, 0.9661, 0.9746, 0.974, 0.9591, 0.9485, 0.9088, 0.9065, 0.8714, 0.0, 0.9564, nan, nan]
1204
+ 2024-08-30 10:34:18.772259: Epoch time: 49.25 s
1205
+ 2024-08-30 10:34:20.964338:
1206
+ 2024-08-30 10:34:20.965245: Epoch 968
1207
+ 2024-08-30 10:34:20.965929: Current learning rate: 0.00045
1208
+ 2024-08-30 10:35:11.805357: train_loss -0.8609
1209
+ 2024-08-30 10:35:11.807266: val_loss -0.8651
1210
+ 2024-08-30 10:35:11.808123: Pseudo dice [0.9342, 0.9529, 0.9568, 0.9437, 0.9374, 0.9392, 0.9332, 0.9365, 0.9466, 0.9474, 0.9442, 0.9262, 0.9469, 0.962, 0.9653, 0.9653, 0.9407, 0.0, 0.9573, nan, 0.0]
1211
+ 2024-08-30 10:35:11.808921: Epoch time: 50.84 s
1212
+ 2024-08-30 10:35:13.364706:
1213
+ 2024-08-30 10:35:13.365916: Epoch 969
1214
+ 2024-08-30 10:35:13.366628: Current learning rate: 0.00044
1215
+ 2024-08-30 10:36:03.890323: train_loss -0.8518
1216
+ 2024-08-30 10:36:03.892499: val_loss -0.8605
1217
+ 2024-08-30 10:36:03.893434: Pseudo dice [0.9404, 0.9564, 0.9572, 0.9579, 0.9614, 0.9661, 0.9651, 0.9691, 0.9508, 0.9418, 0.9412, 0.9487, 0.9676, 0.9618, 0.9378, 0.9173, 0.896, 0.0, 0.9498, nan, nan]
1218
+ 2024-08-30 10:36:03.894784: Epoch time: 50.53 s
1219
+ 2024-08-30 10:36:05.254843:
1220
+ 2024-08-30 10:36:05.255668: Epoch 970
1221
+ 2024-08-30 10:36:05.256326: Current learning rate: 0.00043
1222
+ 2024-08-30 10:36:56.767352: train_loss -0.8553
1223
+ 2024-08-30 10:36:56.769070: val_loss -0.8669
1224
+ 2024-08-30 10:36:56.770013: Pseudo dice [0.9409, 0.9599, 0.9579, 0.9625, 0.9647, 0.9703, 0.9704, 0.9722, 0.9749, 0.9766, 0.9753, 0.9784, 0.973, 0.9625, 0.958, 0.9415, 0.9008, 0.0, 0.9396, nan, nan]
1225
+ 2024-08-30 10:36:56.770851: Epoch time: 51.52 s
1226
+ 2024-08-30 10:36:58.303058:
1227
+ 2024-08-30 10:36:58.303992: Epoch 971
1228
+ 2024-08-30 10:36:58.304650: Current learning rate: 0.00041
1229
+ 2024-08-30 10:37:51.052966: train_loss -0.8511
1230
+ 2024-08-30 10:37:51.057210: val_loss -0.8695
1231
+ 2024-08-30 10:37:51.058389: Pseudo dice [0.9424, 0.9567, 0.9528, 0.9567, 0.9566, 0.9596, 0.9671, 0.9708, 0.9727, 0.974, 0.9613, 0.9613, 0.9678, 0.9598, 0.9492, 0.9396, 0.9303, 0.0, 0.9603, nan, nan]
1232
+ 2024-08-30 10:37:51.059462: Epoch time: 52.75 s
1233
+ 2024-08-30 10:37:52.660736:
1234
+ 2024-08-30 10:37:52.661870: Epoch 972
1235
+ 2024-08-30 10:37:52.662707: Current learning rate: 0.0004
1236
+ 2024-08-30 10:38:46.115569: train_loss -0.8473
1237
+ 2024-08-30 10:38:46.117456: val_loss -0.8688
1238
+ 2024-08-30 10:38:46.118410: Pseudo dice [0.9467, 0.9542, 0.9552, 0.963, 0.9655, 0.9685, 0.9669, 0.9641, 0.9567, 0.9394, 0.9496, 0.9705, 0.9757, 0.9614, 0.9687, 0.9639, 0.9063, 0.0, 0.9488, nan, nan]
1239
+ 2024-08-30 10:38:46.119312: Epoch time: 53.46 s
1240
+ 2024-08-30 10:38:47.479060:
1241
+ 2024-08-30 10:38:47.480008: Epoch 973
1242
+ 2024-08-30 10:38:47.480727: Current learning rate: 0.00039
1243
+ 2024-08-30 10:39:39.407035: train_loss -0.8547
1244
+ 2024-08-30 10:39:39.410274: val_loss -0.8459
1245
+ 2024-08-30 10:39:39.411667: Pseudo dice [0.9431, 0.9664, 0.9625, 0.9673, 0.9484, 0.9083, 0.8803, 0.8826, 0.9039, 0.897, 0.8781, 0.8948, 0.9488, 0.933, 0.9362, 0.9335, 0.8887, 0.0, 0.9493, nan, 0.0]
1246
+ 2024-08-30 10:39:39.412500: Epoch time: 51.93 s
1247
+ 2024-08-30 10:39:40.981354:
1248
+ 2024-08-30 10:39:40.982215: Epoch 974
1249
+ 2024-08-30 10:39:40.982883: Current learning rate: 0.00037
1250
+ 2024-08-30 10:40:33.646824: train_loss -0.8498
1251
+ 2024-08-30 10:40:33.648756: val_loss -0.8655
1252
+ 2024-08-30 10:40:33.649667: Pseudo dice [0.948, 0.9587, 0.9602, 0.9651, 0.9637, 0.957, 0.9566, 0.9663, 0.9671, 0.9683, 0.9659, 0.9546, 0.9351, 0.9272, 0.9344, 0.9261, 0.9274, nan, 0.9631, nan, nan]
1253
+ 2024-08-30 10:40:33.650858: Epoch time: 52.67 s
1254
+ 2024-08-30 10:40:34.929865:
1255
+ 2024-08-30 10:40:34.930692: Epoch 975
1256
+ 2024-08-30 10:40:34.931337: Current learning rate: 0.00036
1257
+ 2024-08-30 10:41:27.566087: train_loss -0.8482
1258
+ 2024-08-30 10:41:27.568153: val_loss -0.8608
1259
+ 2024-08-30 10:41:27.569205: Pseudo dice [0.9477, 0.9617, 0.9573, 0.9613, 0.9665, 0.9704, 0.9684, 0.967, 0.9444, 0.9346, 0.9434, 0.9492, 0.9617, 0.967, 0.9451, 0.9407, 0.9227, 0.0, 0.9552, nan, nan]
1260
+ 2024-08-30 10:41:27.570002: Epoch time: 52.64 s
1261
+ 2024-08-30 10:41:28.975760:
1262
+ 2024-08-30 10:41:28.976546: Epoch 976
1263
+ 2024-08-30 10:41:28.977172: Current learning rate: 0.00035
1264
+ 2024-08-30 10:42:21.734678: train_loss -0.8545
1265
+ 2024-08-30 10:42:21.736466: val_loss -0.8763
1266
+ 2024-08-30 10:42:21.737272: Pseudo dice [0.9477, 0.9601, 0.9572, 0.9584, 0.9648, 0.969, 0.9733, 0.9764, 0.9763, 0.9755, 0.9749, 0.9739, 0.9763, 0.9746, 0.976, 0.9676, 0.9392, 0.0, 0.9537, nan, nan]
1267
+ 2024-08-30 10:42:21.738056: Epoch time: 52.76 s
1268
+ 2024-08-30 10:42:23.365764:
1269
+ 2024-08-30 10:42:23.366827: Epoch 977
1270
+ 2024-08-30 10:42:23.367524: Current learning rate: 0.00034
1271
+ 2024-08-30 10:43:16.225462: train_loss -0.8596
1272
+ 2024-08-30 10:43:16.227605: val_loss -0.8631
1273
+ 2024-08-30 10:43:16.228473: Pseudo dice [0.9426, 0.9546, 0.9606, 0.9654, 0.9691, 0.9702, 0.9716, 0.9671, 0.9671, 0.9696, 0.9652, 0.9478, 0.9705, 0.9558, 0.9122, 0.8836, 0.8467, 0.0, 0.9624, nan, 0.0]
1274
+ 2024-08-30 10:43:16.229274: Epoch time: 52.86 s
1275
+ 2024-08-30 10:43:17.593902:
1276
+ 2024-08-30 10:43:17.594803: Epoch 978
1277
+ 2024-08-30 10:43:17.595508: Current learning rate: 0.00032
1278
+ 2024-08-30 10:44:08.411565: train_loss -0.8548
1279
+ 2024-08-30 10:44:08.414885: val_loss -0.8666
1280
+ 2024-08-30 10:44:08.415771: Pseudo dice [0.9365, 0.9421, 0.9448, 0.9496, 0.9406, 0.9489, 0.9591, 0.9543, 0.9571, 0.9643, 0.9624, 0.9663, 0.96, 0.9627, 0.9621, 0.9482, 0.9437, nan, 0.9587, nan, nan]
1281
+ 2024-08-30 10:44:08.416511: Epoch time: 50.82 s
1282
+ 2024-08-30 10:44:08.417217: Yayy! New best EMA pseudo Dice: 0.8949
1283
+ 2024-08-30 10:44:12.315161:
1284
+ 2024-08-30 10:44:12.315899: Epoch 979
1285
+ 2024-08-30 10:44:12.316523: Current learning rate: 0.00031
1286
+ 2024-08-30 10:45:03.216096: train_loss -0.8622
1287
+ 2024-08-30 10:45:03.218657: val_loss -0.8621
1288
+ 2024-08-30 10:45:03.219755: Pseudo dice [0.9129, 0.9241, 0.9367, 0.933, 0.9333, 0.93, 0.9326, 0.9444, 0.9535, 0.9536, 0.9569, 0.9657, 0.9696, 0.9659, 0.9547, 0.9481, 0.8986, 0.0, 0.9508, nan, nan]
1289
+ 2024-08-30 10:45:03.220763: Epoch time: 50.9 s
1290
+ 2024-08-30 10:45:04.848525:
1291
+ 2024-08-30 10:45:04.849304: Epoch 980
1292
+ 2024-08-30 10:45:04.850012: Current learning rate: 0.0003
1293
+ 2024-08-30 10:45:55.391572: train_loss -0.8482
1294
+ 2024-08-30 10:45:55.393471: val_loss -0.8648
1295
+ 2024-08-30 10:45:55.394352: Pseudo dice [0.9452, 0.9577, 0.9545, 0.9547, 0.9622, 0.9648, 0.9702, 0.9624, 0.9351, 0.9312, 0.9371, 0.9542, 0.973, 0.9738, 0.9742, 0.9427, 0.9357, 0.0, 0.9481, nan, nan]
1296
+ 2024-08-30 10:45:55.395075: Epoch time: 50.55 s
1297
+ 2024-08-30 10:45:55.395663: Yayy! New best EMA pseudo Dice: 0.8956
1298
+ 2024-08-30 10:45:59.639190:
1299
+ 2024-08-30 10:45:59.640233: Epoch 981
1300
+ 2024-08-30 10:45:59.640931: Current learning rate: 0.00028
1301
+ 2024-08-30 10:46:51.220230: train_loss -0.8533
1302
+ 2024-08-30 10:46:51.221961: val_loss -0.8645
1303
+ 2024-08-30 10:46:51.222793: Pseudo dice [0.9084, 0.9289, 0.9261, 0.9328, 0.937, 0.9523, 0.9694, 0.9728, 0.9708, 0.9676, 0.9626, 0.9544, 0.965, 0.9726, 0.9763, 0.9739, 0.9374, 0.0, 0.9653, nan, 0.0]
1304
+ 2024-08-30 10:46:51.223505: Epoch time: 51.58 s
1305
+ 2024-08-30 10:46:52.604110:
1306
+ 2024-08-30 10:46:52.604980: Epoch 982
1307
+ 2024-08-30 10:46:52.605722: Current learning rate: 0.00027
1308
+ 2024-08-30 10:47:45.156091: train_loss -0.8554
1309
+ 2024-08-30 10:47:45.157852: val_loss -0.8633
1310
+ 2024-08-30 10:47:45.158680: Pseudo dice [0.9449, 0.9627, 0.9621, 0.9571, 0.9606, 0.9661, 0.9689, 0.9756, 0.9716, 0.967, 0.9673, 0.9673, 0.9699, 0.9623, 0.9641, 0.9725, 0.9054, 0.0, 0.9439, nan, nan]
1311
+ 2024-08-30 10:47:45.159342: Epoch time: 52.55 s
1312
+ 2024-08-30 10:47:46.722095:
1313
+ 2024-08-30 10:47:46.723049: Epoch 983
1314
+ 2024-08-30 10:47:46.723816: Current learning rate: 0.00026
1315
+ 2024-08-30 10:48:40.935488: train_loss -0.8473
1316
+ 2024-08-30 10:48:40.937503: val_loss -0.8671
1317
+ 2024-08-30 10:48:40.938333: Pseudo dice [0.9467, 0.9546, 0.9525, 0.9532, 0.957, 0.961, 0.9544, 0.9614, 0.9701, 0.9724, 0.9739, 0.9706, 0.9625, 0.9511, 0.9437, 0.9373, 0.9353, 0.0, 0.9564, nan, nan]
1318
+ 2024-08-30 10:48:40.939109: Epoch time: 54.22 s
1319
+ 2024-08-30 10:48:42.372318:
1320
+ 2024-08-30 10:48:42.373050: Epoch 984
1321
+ 2024-08-30 10:48:42.373538: Current learning rate: 0.00024
1322
+ 2024-08-30 10:49:31.493529: train_loss -0.8557
1323
+ 2024-08-30 10:49:31.495258: val_loss -0.8646
1324
+ 2024-08-30 10:49:31.496255: Pseudo dice [0.9378, 0.9574, 0.9616, 0.9586, 0.966, 0.9679, 0.9707, 0.9704, 0.9639, 0.9673, 0.9545, 0.9563, 0.9653, 0.953, 0.9537, 0.9435, 0.9318, nan, 0.9561, nan, nan]
1325
+ 2024-08-30 10:49:31.496979: Epoch time: 49.12 s
1326
+ 2024-08-30 10:49:31.497591: Yayy! New best EMA pseudo Dice: 0.9012
1327
+ 2024-08-30 10:49:36.175643:
1328
+ 2024-08-30 10:49:36.176605: Epoch 985
1329
+ 2024-08-30 10:49:36.177341: Current learning rate: 0.00023
1330
+ 2024-08-30 10:50:23.749144: train_loss -0.8586
1331
+ 2024-08-30 10:50:23.751307: val_loss -0.8555
1332
+ 2024-08-30 10:50:23.752171: Pseudo dice [0.8816, 0.9021, 0.9041, 0.9093, 0.9088, 0.9426, 0.9738, 0.9772, 0.9757, 0.9724, 0.9509, 0.9501, 0.9708, 0.9572, 0.9328, 0.9296, 0.8655, 0.0, 0.9413, nan, nan]
1333
+ 2024-08-30 10:50:23.752908: Epoch time: 47.58 s
1334
+ 2024-08-30 10:50:25.481323:
1335
+ 2024-08-30 10:50:25.482186: Epoch 986
1336
+ 2024-08-30 10:50:25.482784: Current learning rate: 0.00021
1337
+ 2024-08-30 10:51:18.112314: train_loss -0.8506
1338
+ 2024-08-30 10:51:18.114195: val_loss -0.8693
1339
+ 2024-08-30 10:51:18.115175: Pseudo dice [0.9465, 0.9583, 0.96, 0.9615, 0.9657, 0.9728, 0.9767, 0.9735, 0.9725, 0.9713, 0.9715, 0.9567, 0.9247, 0.9496, 0.9447, 0.9297, 0.9349, nan, 0.9532, nan, 0.0]
1340
+ 2024-08-30 10:51:18.116014: Epoch time: 52.63 s
1341
+ 2024-08-30 10:51:19.735790:
1342
+ 2024-08-30 10:51:19.736687: Epoch 987
1343
+ 2024-08-30 10:51:19.737489: Current learning rate: 0.0002
1344
+ 2024-08-30 10:52:10.007353: train_loss -0.8558
1345
+ 2024-08-30 10:52:10.010361: val_loss -0.8589
1346
+ 2024-08-30 10:52:10.011275: Pseudo dice [0.9473, 0.962, 0.9418, 0.9268, 0.9331, 0.9368, 0.9345, 0.9339, 0.9359, 0.9444, 0.9562, 0.9696, 0.9589, 0.9211, 0.9083, 0.8948, 0.8692, 0.0, 0.9597, nan, nan]
1347
+ 2024-08-30 10:52:10.011992: Epoch time: 50.27 s
1348
+ 2024-08-30 10:52:11.381682:
1349
+ 2024-08-30 10:52:11.383344: Epoch 988
1350
+ 2024-08-30 10:52:11.384220: Current learning rate: 0.00019
1351
+ 2024-08-30 10:53:01.295525: train_loss -0.8603
1352
+ 2024-08-30 10:53:01.297323: val_loss -0.8651
1353
+ 2024-08-30 10:53:01.298688: Pseudo dice [0.9434, 0.9505, 0.9562, 0.9635, 0.9697, 0.9582, 0.9502, 0.9632, 0.9739, 0.975, 0.9757, 0.9708, 0.9752, 0.9574, 0.9289, 0.9098, 0.8922, 0.0, 0.94, nan, nan]
1354
+ 2024-08-30 10:53:01.299486: Epoch time: 49.92 s
1355
+ 2024-08-30 10:53:02.663652:
1356
+ 2024-08-30 10:53:02.664519: Epoch 989
1357
+ 2024-08-30 10:53:02.665169: Current learning rate: 0.00017
1358
+ 2024-08-30 10:53:57.241668: train_loss -0.8637
1359
+ 2024-08-30 10:53:57.243889: val_loss -0.8555
1360
+ 2024-08-30 10:53:57.245089: Pseudo dice [0.9463, 0.9575, 0.9632, 0.9629, 0.9615, 0.9643, 0.9715, 0.9745, 0.9738, 0.9749, 0.9727, 0.9755, 0.9715, 0.94, 0.885, 0.8641, 0.8483, 0.0, 0.9524, nan, nan]
1361
+ 2024-08-30 10:53:57.246208: Epoch time: 54.58 s
1362
+ 2024-08-30 10:53:58.841140:
1363
+ 2024-08-30 10:53:58.841934: Epoch 990
1364
+ 2024-08-30 10:53:58.845400: Current learning rate: 0.00016
1365
+ 2024-08-30 10:54:48.863036: train_loss -0.8539
1366
+ 2024-08-30 10:54:48.865016: val_loss -0.8523
1367
+ 2024-08-30 10:54:48.866725: Pseudo dice [0.9465, 0.9529, 0.9595, 0.9615, 0.9678, 0.969, 0.9484, 0.9364, 0.9373, 0.9403, 0.9349, 0.9211, 0.9456, 0.9531, 0.9398, 0.9109, 0.8844, 0.0, 0.96, nan, 0.0]
1368
+ 2024-08-30 10:54:48.867565: Epoch time: 50.02 s
1369
+ 2024-08-30 10:54:50.234685:
1370
+ 2024-08-30 10:54:50.235577: Epoch 991
1371
+ 2024-08-30 10:54:50.236278: Current learning rate: 0.00014
1372
+ 2024-08-30 10:55:42.558640: train_loss -0.8595
1373
+ 2024-08-30 10:55:42.563770: val_loss -0.873
1374
+ 2024-08-30 10:55:42.565078: Pseudo dice [0.9482, 0.9565, 0.945, 0.9437, 0.9534, 0.9617, 0.972, 0.9719, 0.9712, 0.9729, 0.9746, 0.9741, 0.9722, 0.9761, 0.9763, 0.9711, 0.9205, 0.0, 0.95, nan, nan]
1375
+ 2024-08-30 10:55:42.568004: Epoch time: 52.33 s
1376
+ 2024-08-30 10:55:43.959184:
1377
+ 2024-08-30 10:55:43.960096: Epoch 992
1378
+ 2024-08-30 10:55:43.960778: Current learning rate: 0.00013
1379
+ 2024-08-30 10:56:34.464707: train_loss -0.8517
1380
+ 2024-08-30 10:56:34.466847: val_loss -0.865
1381
+ 2024-08-30 10:56:34.468580: Pseudo dice [0.934, 0.9282, 0.9167, 0.9142, 0.9235, 0.9438, 0.9612, 0.9664, 0.9682, 0.9635, 0.9569, 0.9621, 0.9717, 0.9743, 0.9725, 0.9734, 0.9392, 0.0, 0.9582, nan, nan]
1382
+ 2024-08-30 10:56:34.469472: Epoch time: 50.51 s
1383
+ 2024-08-30 10:56:35.844016:
1384
+ 2024-08-30 10:56:35.844839: Epoch 993
1385
+ 2024-08-30 10:56:35.845395: Current learning rate: 0.00011
1386
+ 2024-08-30 10:57:27.177797: train_loss -0.8557
1387
+ 2024-08-30 10:57:27.179776: val_loss -0.8512
1388
+ 2024-08-30 10:57:27.180766: Pseudo dice [0.9189, 0.9003, 0.8902, 0.8881, 0.8969, 0.9066, 0.9233, 0.9348, 0.9333, 0.9261, 0.9133, 0.9102, 0.9065, 0.9142, 0.9102, 0.8891, 0.9107, nan, 0.9603, nan, nan]
1389
+ 2024-08-30 10:57:27.181525: Epoch time: 51.34 s
1390
+ 2024-08-30 10:57:28.516779:
1391
+ 2024-08-30 10:57:28.517621: Epoch 994
1392
+ 2024-08-30 10:57:28.518277: Current learning rate: 0.0001
1393
+ 2024-08-30 10:58:20.734412: train_loss -0.8588
1394
+ 2024-08-30 10:58:20.736292: val_loss -0.8618
1395
+ 2024-08-30 10:58:20.737302: Pseudo dice [0.9448, 0.9628, 0.9664, 0.9663, 0.9707, 0.9715, 0.9521, 0.933, 0.9258, 0.9169, 0.9189, 0.9543, 0.9757, 0.9759, 0.9676, 0.9625, 0.9047, 0.0, 0.9469, nan, nan]
1396
+ 2024-08-30 10:58:20.738145: Epoch time: 52.22 s
1397
+ 2024-08-30 10:58:22.078560:
1398
+ 2024-08-30 10:58:22.079548: Epoch 995
1399
+ 2024-08-30 10:58:22.080193: Current learning rate: 8e-05
1400
+ 2024-08-30 10:59:15.489184: train_loss -0.8588
1401
+ 2024-08-30 10:59:15.491495: val_loss -0.8563
1402
+ 2024-08-30 10:59:15.492667: Pseudo dice [0.9419, 0.9519, 0.9545, 0.9647, 0.9683, 0.9687, 0.9691, 0.967, 0.9676, 0.9707, 0.9644, 0.9673, 0.9713, 0.9637, 0.9456, 0.9309, 0.889, 0.0, 0.9452, nan, nan]
1403
+ 2024-08-30 10:59:15.496259: Epoch time: 53.41 s
1404
+ 2024-08-30 10:59:16.895959:
1405
+ 2024-08-30 10:59:16.896968: Epoch 996
1406
+ 2024-08-30 10:59:16.897671: Current learning rate: 7e-05
1407
+ 2024-08-30 11:00:08.924720: train_loss -0.8567
1408
+ 2024-08-30 11:00:08.926616: val_loss -0.8535
1409
+ 2024-08-30 11:00:08.927627: Pseudo dice [0.9473, 0.9595, 0.9598, 0.9639, 0.96, 0.963, 0.968, 0.9631, 0.9458, 0.9417, 0.943, 0.9533, 0.8951, 0.88, 0.8663, 0.8353, 0.7941, 0.0, 0.9559, nan, 0.0]
1410
+ 2024-08-30 11:00:08.928442: Epoch time: 52.03 s
1411
+ 2024-08-30 11:00:10.462140:
1412
+ 2024-08-30 11:00:10.463281: Epoch 997
1413
+ 2024-08-30 11:00:10.464050: Current learning rate: 5e-05
1414
+ 2024-08-30 11:01:02.995422: train_loss -0.8582
1415
+ 2024-08-30 11:01:02.997510: val_loss -0.8605
1416
+ 2024-08-30 11:01:02.998402: Pseudo dice [0.9504, 0.9636, 0.9663, 0.9672, 0.9691, 0.9594, 0.9465, 0.9246, 0.8972, 0.898, 0.9106, 0.9234, 0.9464, 0.9293, 0.914, 0.9057, 0.906, 0.0, 0.9568, nan, nan]
1417
+ 2024-08-30 11:01:02.999275: Epoch time: 52.54 s
1418
+ 2024-08-30 11:01:04.470241:
1419
+ 2024-08-30 11:01:04.471272: Epoch 998
1420
+ 2024-08-30 11:01:04.471981: Current learning rate: 4e-05
1421
+ 2024-08-30 11:01:56.748690: train_loss -0.8576
1422
+ 2024-08-30 11:01:56.750474: val_loss -0.8595
1423
+ 2024-08-30 11:01:56.751365: Pseudo dice [0.942, 0.9497, 0.9356, 0.9318, 0.944, 0.9526, 0.9614, 0.9519, 0.9392, 0.9468, 0.9599, 0.9453, 0.9154, 0.9521, 0.956, 0.9309, 0.8729, 0.0, 0.954, nan, 0.0]
1424
+ 2024-08-30 11:01:56.752067: Epoch time: 52.28 s
1425
+ 2024-08-30 11:01:58.278047:
1426
+ 2024-08-30 11:01:58.278900: Epoch 999
1427
+ 2024-08-30 11:01:58.279588: Current learning rate: 2e-05
1428
+ 2024-08-30 11:02:48.987234: train_loss -0.8578
1429
+ 2024-08-30 11:02:48.990110: val_loss -0.8588
1430
+ 2024-08-30 11:02:48.991422: Pseudo dice [0.9047, 0.8957, 0.8757, 0.8963, 0.9056, 0.9127, 0.9236, 0.9078, 0.9045, 0.9242, 0.9359, 0.9477, 0.9653, 0.9733, 0.9759, 0.9586, 0.9448, 0.0, 0.9615, nan, nan]
1431
+ 2024-08-30 11:02:48.992284: Epoch time: 50.71 s
1432
+ 2024-08-30 11:02:53.416574: Training done.
nnUNetTrainer__nnUNetResEncUNetMPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset601_VertebralBodies",
3
+ "plans_name": "nnUNetResEncUNetMPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 1.5,
6
+ 1.5,
7
+ 1.5
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 239,
11
+ 252,
12
+ 252
13
+ ],
14
+ "image_reader_writer": "SimpleITKIO",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 48,
30
+ "patch_size": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 240.0,
36
+ 240.0
37
+ ],
38
+ "spacing": [
39
+ 1.5,
40
+ 1.5
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
49
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
50
+ "resampling_fn_data_kwargs": {
51
+ "is_seg": false,
52
+ "order": 3,
53
+ "order_z": 0,
54
+ "force_separate_z": null
55
+ },
56
+ "resampling_fn_seg_kwargs": {
57
+ "is_seg": true,
58
+ "order": 1,
59
+ "order_z": 0,
60
+ "force_separate_z": null
61
+ },
62
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
63
+ "resampling_fn_probabilities_kwargs": {
64
+ "is_seg": false,
65
+ "order": 1,
66
+ "order_z": 0,
67
+ "force_separate_z": null
68
+ },
69
+ "architecture": {
70
+ "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
71
+ "arch_kwargs": {
72
+ "n_stages": 7,
73
+ "features_per_stage": [
74
+ 32,
75
+ 64,
76
+ 128,
77
+ 256,
78
+ 512,
79
+ 512,
80
+ 512
81
+ ],
82
+ "conv_op": "torch.nn.modules.conv.Conv2d",
83
+ "kernel_sizes": [
84
+ [
85
+ 3,
86
+ 3
87
+ ],
88
+ [
89
+ 3,
90
+ 3
91
+ ],
92
+ [
93
+ 3,
94
+ 3
95
+ ],
96
+ [
97
+ 3,
98
+ 3
99
+ ],
100
+ [
101
+ 3,
102
+ 3
103
+ ],
104
+ [
105
+ 3,
106
+ 3
107
+ ],
108
+ [
109
+ 3,
110
+ 3
111
+ ]
112
+ ],
113
+ "strides": [
114
+ [
115
+ 1,
116
+ 1
117
+ ],
118
+ [
119
+ 2,
120
+ 2
121
+ ],
122
+ [
123
+ 2,
124
+ 2
125
+ ],
126
+ [
127
+ 2,
128
+ 2
129
+ ],
130
+ [
131
+ 2,
132
+ 2
133
+ ],
134
+ [
135
+ 2,
136
+ 2
137
+ ],
138
+ [
139
+ 2,
140
+ 2
141
+ ]
142
+ ],
143
+ "n_blocks_per_stage": [
144
+ 1,
145
+ 3,
146
+ 4,
147
+ 6,
148
+ 6,
149
+ 6,
150
+ 6
151
+ ],
152
+ "n_conv_per_stage_decoder": [
153
+ 1,
154
+ 1,
155
+ 1,
156
+ 1,
157
+ 1,
158
+ 1
159
+ ],
160
+ "conv_bias": true,
161
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
162
+ "norm_op_kwargs": {
163
+ "eps": 1e-05,
164
+ "affine": true
165
+ },
166
+ "dropout_op": null,
167
+ "dropout_op_kwargs": null,
168
+ "nonlin": "torch.nn.LeakyReLU",
169
+ "nonlin_kwargs": {
170
+ "inplace": true
171
+ }
172
+ },
173
+ "_kw_requires_import": [
174
+ "conv_op",
175
+ "norm_op",
176
+ "dropout_op",
177
+ "nonlin"
178
+ ]
179
+ },
180
+ "batch_dice": true
181
+ },
182
+ "3d_fullres": {
183
+ "data_identifier": "nnUNetPlans_3d_fullres",
184
+ "preprocessor_name": "DefaultPreprocessor",
185
+ "batch_size": 2,
186
+ "patch_size": [
187
+ 128,
188
+ 128,
189
+ 128
190
+ ],
191
+ "median_image_size_in_voxels": [
192
+ 235.0,
193
+ 240.0,
194
+ 240.0
195
+ ],
196
+ "spacing": [
197
+ 1.5,
198
+ 1.5,
199
+ 1.5
200
+ ],
201
+ "normalization_schemes": [
202
+ "CTNormalization"
203
+ ],
204
+ "use_mask_for_norm": [
205
+ false
206
+ ],
207
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
208
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
209
+ "resampling_fn_data_kwargs": {
210
+ "is_seg": false,
211
+ "order": 3,
212
+ "order_z": 0,
213
+ "force_separate_z": null
214
+ },
215
+ "resampling_fn_seg_kwargs": {
216
+ "is_seg": true,
217
+ "order": 1,
218
+ "order_z": 0,
219
+ "force_separate_z": null
220
+ },
221
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
222
+ "resampling_fn_probabilities_kwargs": {
223
+ "is_seg": false,
224
+ "order": 1,
225
+ "order_z": 0,
226
+ "force_separate_z": null
227
+ },
228
+ "architecture": {
229
+ "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
230
+ "arch_kwargs": {
231
+ "n_stages": 6,
232
+ "features_per_stage": [
233
+ 32,
234
+ 64,
235
+ 128,
236
+ 256,
237
+ 320,
238
+ 320
239
+ ],
240
+ "conv_op": "torch.nn.modules.conv.Conv3d",
241
+ "kernel_sizes": [
242
+ [
243
+ 3,
244
+ 3,
245
+ 3
246
+ ],
247
+ [
248
+ 3,
249
+ 3,
250
+ 3
251
+ ],
252
+ [
253
+ 3,
254
+ 3,
255
+ 3
256
+ ],
257
+ [
258
+ 3,
259
+ 3,
260
+ 3
261
+ ],
262
+ [
263
+ 3,
264
+ 3,
265
+ 3
266
+ ],
267
+ [
268
+ 3,
269
+ 3,
270
+ 3
271
+ ]
272
+ ],
273
+ "strides": [
274
+ [
275
+ 1,
276
+ 1,
277
+ 1
278
+ ],
279
+ [
280
+ 2,
281
+ 2,
282
+ 2
283
+ ],
284
+ [
285
+ 2,
286
+ 2,
287
+ 2
288
+ ],
289
+ [
290
+ 2,
291
+ 2,
292
+ 2
293
+ ],
294
+ [
295
+ 2,
296
+ 2,
297
+ 2
298
+ ],
299
+ [
300
+ 2,
301
+ 2,
302
+ 2
303
+ ]
304
+ ],
305
+ "n_blocks_per_stage": [
306
+ 1,
307
+ 3,
308
+ 4,
309
+ 6,
310
+ 6,
311
+ 6
312
+ ],
313
+ "n_conv_per_stage_decoder": [
314
+ 1,
315
+ 1,
316
+ 1,
317
+ 1,
318
+ 1
319
+ ],
320
+ "conv_bias": true,
321
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
322
+ "norm_op_kwargs": {
323
+ "eps": 1e-05,
324
+ "affine": true
325
+ },
326
+ "dropout_op": null,
327
+ "dropout_op_kwargs": null,
328
+ "nonlin": "torch.nn.LeakyReLU",
329
+ "nonlin_kwargs": {
330
+ "inplace": true
331
+ }
332
+ },
333
+ "_kw_requires_import": [
334
+ "conv_op",
335
+ "norm_op",
336
+ "dropout_op",
337
+ "nonlin"
338
+ ]
339
+ },
340
+ "batch_dice": false
341
+ }
342
+ },
343
+ "experiment_planner_used": "nnUNetPlannerResEncM",
344
+ "label_manager": "LabelManager",
345
+ "foreground_intensity_properties_per_channel": {
346
+ "0": {
347
+ "max": 10076.0,
348
+ "mean": 251.18613451837237,
349
+ "median": 216.0,
350
+ "min": -2048.0,
351
+ "percentile_00_5": -158.0,
352
+ "percentile_99_5": 1100.0,
353
+ "std": 205.1041738973246
354
+ }
355
+ }
356
+ }