File size: 12,626 Bytes
5bba540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_cppe5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr_finetuned_cppe5

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6381
- Map: 0.1544
- Map 50: 0.3211
- Map 75: 0.1335
- Map Small: 0.0306
- Map Medium: 0.1213
- Map Large: 0.2305
- Mar 1: 0.1679
- Mar 10: 0.3519
- Mar 100: 0.391
- Mar Small: 0.1517
- Mar Medium: 0.3448
- Mar Large: 0.5355
- Map Coverall: 0.453
- Mar 100 Coverall: 0.6428
- Map Face Shield: 0.0221
- Mar 100 Face Shield: 0.3165
- Map Gloves: 0.0499
- Mar 100 Gloves: 0.342
- Map Goggles: 0.0449
- Mar 100 Goggles: 0.2846
- Map Mask: 0.202
- Mar 100 Mask: 0.3693

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log        | 1.0   | 18   | 6.9596          | 0.0001 | 0.0005 | 0.0    | 0.0       | 0.0        | 0.0002    | 0.002  | 0.005  | 0.0144  | 0.0       | 0.0095     | 0.0214    | 0.0003       | 0.0599           | 0.0             | 0.0                 | 0.0        | 0.0013         | 0.0         | 0.0             | 0.0001   | 0.0107       |
| No log        | 2.0   | 36   | 3.3034          | 0.0011 | 0.0045 | 0.0003 | 0.0011    | 0.0014     | 0.0031    | 0.0048 | 0.0328 | 0.0561  | 0.032     | 0.0559     | 0.0517    | 0.0021       | 0.1086           | 0.0             | 0.0063              | 0.0002     | 0.0263         | 0.0017      | 0.0508          | 0.0014   | 0.0884       |
| No log        | 3.0   | 54   | 2.8530          | 0.0039 | 0.0115 | 0.002  | 0.0008    | 0.0014     | 0.0113    | 0.0167 | 0.0698 | 0.1033  | 0.0214    | 0.0651     | 0.1309    | 0.0156       | 0.3122           | 0.0             | 0.0101              | 0.0011     | 0.0719         | 0.0002      | 0.0308          | 0.0025   | 0.0916       |
| No log        | 4.0   | 72   | 2.5424          | 0.0156 | 0.0329 | 0.0151 | 0.0015    | 0.0092     | 0.0199    | 0.0413 | 0.0949 | 0.1383  | 0.0522    | 0.1064     | 0.1807    | 0.0689       | 0.3369           | 0.0001          | 0.0013              | 0.002      | 0.1321         | 0.0005      | 0.0385          | 0.0063   | 0.1827       |
| No log        | 5.0   | 90   | 2.4114          | 0.0201 | 0.0454 | 0.0151 | 0.0046    | 0.0166     | 0.0272    | 0.0528 | 0.1104 | 0.1562  | 0.0615    | 0.1094     | 0.2159    | 0.079        | 0.3577           | 0.0             | 0.0                 | 0.0043     | 0.1723         | 0.0         | 0.0             | 0.0172   | 0.2511       |
| No log        | 6.0   | 108  | 2.2955          | 0.0352 | 0.0765 | 0.0298 | 0.0072    | 0.0221     | 0.0371    | 0.067  | 0.1331 | 0.1811  | 0.0667    | 0.1508     | 0.2155    | 0.1438       | 0.4477           | 0.0             | 0.0                 | 0.0052     | 0.1737         | 0.0052      | 0.0169          | 0.0218   | 0.2671       |
| No log        | 7.0   | 126  | 2.2319          | 0.0333 | 0.0741 | 0.0268 | 0.0098    | 0.0259     | 0.0484    | 0.0829 | 0.1645 | 0.2172  | 0.0771    | 0.1655     | 0.2879    | 0.1201       | 0.491            | 0.0             | 0.0                 | 0.0103     | 0.2362         | 0.0018      | 0.0585          | 0.0343   | 0.3004       |
| No log        | 8.0   | 144  | 2.1602          | 0.0346 | 0.0762 | 0.027  | 0.0105    | 0.0319     | 0.0475    | 0.0822 | 0.1698 | 0.2212  | 0.0784    | 0.166      | 0.2791    | 0.114        | 0.5378           | 0.0012          | 0.0063              | 0.0061     | 0.2027         | 0.0036      | 0.0385          | 0.0482   | 0.3204       |
| No log        | 9.0   | 162  | 2.1318          | 0.0365 | 0.0751 | 0.0317 | 0.008     | 0.0388     | 0.0493    | 0.0876 | 0.1838 | 0.2341  | 0.0799    | 0.1945     | 0.2747    | 0.115        | 0.5775           | 0.0             | 0.0                 | 0.0058     | 0.1929         | 0.0054      | 0.0646          | 0.0562   | 0.3356       |
| No log        | 10.0  | 180  | 2.0494          | 0.0454 | 0.1034 | 0.0363 | 0.0132    | 0.0438     | 0.0645    | 0.1057 | 0.2013 | 0.2497  | 0.0892    | 0.1899     | 0.36      | 0.1363       | 0.5279           | 0.0001          | 0.0051              | 0.0082     | 0.2491         | 0.0086      | 0.0923          | 0.0736   | 0.3742       |
| No log        | 11.0  | 198  | 2.0013          | 0.0505 | 0.1115 | 0.0411 | 0.0108    | 0.0482     | 0.0709    | 0.1015 | 0.2235 | 0.269   | 0.0854    | 0.2097     | 0.3776    | 0.1646       | 0.5914           | 0.0005          | 0.0177              | 0.0113     | 0.2562         | 0.0061      | 0.1215          | 0.0699   | 0.3582       |
| No log        | 12.0  | 216  | 1.9699          | 0.057  | 0.1211 | 0.0445 | 0.0117    | 0.0476     | 0.078     | 0.0962 | 0.2212 | 0.2676  | 0.0758    | 0.215      | 0.3634    | 0.1992       | 0.6122           | 0.0004          | 0.0127              | 0.0093     | 0.2527         | 0.006       | 0.1169          | 0.0702   | 0.3436       |
| No log        | 13.0  | 234  | 1.9105          | 0.0722 | 0.1588 | 0.06   | 0.0183    | 0.0591     | 0.1058    | 0.1318 | 0.2622 | 0.3075  | 0.1026    | 0.2644     | 0.4241    | 0.2304       | 0.6252           | 0.0018          | 0.062               | 0.0125     | 0.2848         | 0.0221      | 0.1862          | 0.0942   | 0.3791       |
| No log        | 14.0  | 252  | 1.8849          | 0.0859 | 0.1809 | 0.0771 | 0.0189    | 0.0681     | 0.1184    | 0.1271 | 0.2626 | 0.3093  | 0.1056    | 0.265      | 0.4173    | 0.2761       | 0.632            | 0.0044          | 0.0962              | 0.0153     | 0.2835         | 0.0203      | 0.1615          | 0.1136   | 0.3733       |
| No log        | 15.0  | 270  | 1.8380          | 0.0968 | 0.2026 | 0.0867 | 0.0139    | 0.0679     | 0.1375    | 0.1275 | 0.2733 | 0.3172  | 0.1078    | 0.2588     | 0.4298    | 0.3325       | 0.645            | 0.0111          | 0.1367              | 0.0173     | 0.3022         | 0.0124      | 0.1369          | 0.1108   | 0.3653       |
| No log        | 16.0  | 288  | 1.8123          | 0.1153 | 0.2438 | 0.101  | 0.0254    | 0.0862     | 0.1513    | 0.14   | 0.2974 | 0.3346  | 0.1297    | 0.2825     | 0.443     | 0.3832       | 0.6392           | 0.0256          | 0.2114              | 0.0192     | 0.3125         | 0.0221      | 0.16            | 0.1265   | 0.3498       |
| No log        | 17.0  | 306  | 1.7964          | 0.1199 | 0.2621 | 0.1026 | 0.0219    | 0.094      | 0.1591    | 0.1306 | 0.2957 | 0.3384  | 0.1264    | 0.2885     | 0.454     | 0.3926       | 0.6374           | 0.0236          | 0.1987              | 0.0221     | 0.3152         | 0.0271      | 0.2062          | 0.1343   | 0.3347       |
| No log        | 18.0  | 324  | 1.7520          | 0.1294 | 0.2814 | 0.1075 | 0.0242    | 0.1067     | 0.1774    | 0.1399 | 0.319  | 0.3555  | 0.138     | 0.3067     | 0.4831    | 0.4066       | 0.6541           | 0.0262          | 0.2165              | 0.0302     | 0.3263         | 0.0286      | 0.2246          | 0.1555   | 0.356        |
| No log        | 19.0  | 342  | 1.7232          | 0.1373 | 0.2907 | 0.1166 | 0.0273    | 0.1082     | 0.1956    | 0.1483 | 0.3258 | 0.3608  | 0.1471    | 0.3052     | 0.5008    | 0.4284       | 0.645            | 0.016           | 0.2266              | 0.0355     | 0.3402         | 0.0305      | 0.2292          | 0.1764   | 0.3631       |
| No log        | 20.0  | 360  | 1.7113          | 0.1395 | 0.3024 | 0.1141 | 0.0301    | 0.1092     | 0.2093    | 0.1525 | 0.3247 | 0.3575  | 0.1575    | 0.3006     | 0.4969    | 0.4258       | 0.6293           | 0.0225          | 0.2418              | 0.0372     | 0.3366         | 0.0254      | 0.2277          | 0.1869   | 0.352        |
| No log        | 21.0  | 378  | 1.6864          | 0.1447 | 0.3079 | 0.1238 | 0.0295    | 0.1154     | 0.2157    | 0.1598 | 0.342  | 0.374   | 0.1575    | 0.3211     | 0.5222    | 0.4284       | 0.6437           | 0.0231          | 0.2671              | 0.045      | 0.3384         | 0.0349      | 0.2615          | 0.1923   | 0.3591       |
| No log        | 22.0  | 396  | 1.6746          | 0.1495 | 0.3155 | 0.1282 | 0.03      | 0.115      | 0.2223    | 0.169  | 0.3466 | 0.379   | 0.1673    | 0.3227     | 0.5279    | 0.4376       | 0.6464           | 0.0258          | 0.2759              | 0.0458     | 0.3362         | 0.0436      | 0.2677          | 0.1946   | 0.3689       |
| No log        | 23.0  | 414  | 1.6604          | 0.1499 | 0.311  | 0.1336 | 0.0313    | 0.1178     | 0.2233    | 0.161  | 0.3479 | 0.3836  | 0.1599    | 0.3352     | 0.5265    | 0.4435       | 0.6486           | 0.0246          | 0.3013              | 0.0458     | 0.3339         | 0.0411      | 0.2677          | 0.1944   | 0.3662       |
| No log        | 24.0  | 432  | 1.6552          | 0.1508 | 0.3167 | 0.1301 | 0.0284    | 0.1209     | 0.2256    | 0.1645 | 0.3503 | 0.389   | 0.1621    | 0.342      | 0.533     | 0.4469       | 0.6446           | 0.0229          | 0.3025              | 0.046      | 0.3429         | 0.0399      | 0.2846          | 0.1985   | 0.3702       |
| No log        | 25.0  | 450  | 1.6465          | 0.1506 | 0.3124 | 0.13   | 0.0287    | 0.1185     | 0.2266    | 0.1611 | 0.3505 | 0.3869  | 0.1588    | 0.339      | 0.5355    | 0.4472       | 0.6446           | 0.0209          | 0.2962              | 0.0473     | 0.342          | 0.0404      | 0.2831          | 0.1974   | 0.3684       |
| No log        | 26.0  | 468  | 1.6419          | 0.1526 | 0.3209 | 0.1298 | 0.0283    | 0.1197     | 0.2258    | 0.1625 | 0.3453 | 0.3854  | 0.1545    | 0.338      | 0.5263    | 0.4531       | 0.6428           | 0.022           | 0.2911              | 0.0467     | 0.3438         | 0.0441      | 0.2785          | 0.197    | 0.3707       |
| No log        | 27.0  | 486  | 1.6383          | 0.1546 | 0.3235 | 0.1354 | 0.0288    | 0.1247     | 0.2274    | 0.164  | 0.3475 | 0.3872  | 0.1546    | 0.3396     | 0.5312    | 0.4539       | 0.645            | 0.0216          | 0.2975              | 0.0493     | 0.3438         | 0.048       | 0.2815          | 0.2004   | 0.3684       |
| 3.1149        | 28.0  | 504  | 1.6393          | 0.1544 | 0.3208 | 0.1328 | 0.0306    | 0.1218     | 0.2298    | 0.1668 | 0.3518 | 0.3902  | 0.1524    | 0.3423     | 0.5368    | 0.4535       | 0.6414           | 0.0222          | 0.3114              | 0.0496     | 0.3429         | 0.045       | 0.2862          | 0.2015   | 0.3693       |
| 3.1149        | 29.0  | 522  | 1.6383          | 0.1544 | 0.3221 | 0.1332 | 0.0308    | 0.1218     | 0.2306    | 0.167  | 0.3515 | 0.3909  | 0.1517    | 0.3436     | 0.536     | 0.4533       | 0.6428           | 0.0219          | 0.3152              | 0.05       | 0.342          | 0.0449      | 0.2846          | 0.2021   | 0.3698       |
| 3.1149        | 30.0  | 540  | 1.6381          | 0.1544 | 0.3211 | 0.1335 | 0.0306    | 0.1213     | 0.2305    | 0.1679 | 0.3519 | 0.391   | 0.1517    | 0.3448     | 0.5355    | 0.453        | 0.6428           | 0.0221          | 0.3165              | 0.0499     | 0.342          | 0.0449      | 0.2846          | 0.202    | 0.3693       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1