File size: 13,687 Bytes
2eb9217 5a402b7 2eb9217 c633cc6 2eb9217 b1b63f7 5a402b7 2eb9217 5a402b7 08e7acd 5a402b7 2eb9217 5a402b7 cc3d1b3 2eb9217 fe606d9 2eb9217 5a402b7 cc3d1b3 5a402b7 2eb9217 5a402b7 2eb9217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import itertools
import json
import pickle
from random import Random
from datasets import load_dataset
import faiss
import pandas as pd
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from sentence_transformers import SentenceTransformer
class GaussianCoveragePooling(torch.nn.Module):
def __init__(self, coverage_chunks, sigma, alpha):
"""
Custom pooling layer that computes weighted mean pooling using Gaussian-based weights.
Args:
coverage_chunks (int): Number of weighted pooling operations (N).
sigma (float): Standard deviation for Gaussian weighting.
alpha (float): Weighting factor for merging with standard mean pooling.
"""
super().__init__()
self.coverage_chunks = coverage_chunks
self.sigma = sigma # Controls width of Gaussians
self.alpha = alpha # Blends standard mean with weighted mean
def forward(self, features, chunk_indicators=None):
"""
Computes weighted mean pooling using Gaussian-based weights.
Args:
self (SentenceTransformer): The model.
features (dict): The token embeddings and attention mask.
chunk_indicators (tensor[bz, 1]): Index indicators to return a specific chunk,
leave as None to return embeddings for all chunks. Mainly useful for training,
not inference. Leave as None for inference.
"""
# Get token embeddings and attention mask
token_embeddings = features[
"token_embeddings"
] # (batch_size, seq_len, hidden_dim)
attention_mask = (
features["attention_mask"].float().unsqueeze(-1)
) # (batch_size, seq_len, 1)
# Get shapes and devices
batch_size, seq_len, hidden_dim = token_embeddings.shape
device = token_embeddings.device
# Compute actual sequence lengths (ignoring padding)
# (batch_size, 1)
seq_lengths = attention_mask.squeeze(-1).sum(dim=1, keepdim=True)
max_seq_length = int(torch.max(seq_lengths).item())
# Standard mean pooling
sum_embeddings = torch.sum(token_embeddings * attention_mask, dim=1)
sum_mask = torch.sum(attention_mask, dim=1).clamp(min=1e-9)
standard_mean = sum_embeddings / sum_mask # (batch_size, hidden_dim)
# Compute chunk centers dynamically based on sequence length
chunk_positions = torch.linspace(0, 1, self.coverage_chunks + 2, device=device)[
1:-1
] # Excludes 0 and 1
chunk_centers = chunk_positions * seq_lengths # (batch_size, N)
# Token positions per sequence (batch_size, seq_len)
token_positions = (
torch.arange(seq_len, device=device).float().unsqueeze(0)
) # (1, seq_len)
# Compute Gaussian weights (batch_size, N, seq_len)
seq_lengths = seq_lengths.view(seq_lengths.shape[0], 1, 1).repeat(
1, self.coverage_chunks, max_seq_length
)
gaussians = torch.exp(
-0.5
* (
(token_positions.unsqueeze(1) - chunk_centers.unsqueeze(2))
/ (self.sigma * seq_lengths)
)
** 2
)
# Mask out padding and normalize Gaussian weights per sequence
# (batch_size, N, seq_len)
gaussians = gaussians * attention_mask.squeeze(-1).unsqueeze(1)
# Normalize against gaussian weights
gaussians /= gaussians.sum(dim=2, keepdim=True).clamp(min=1e-9)
# Compute weighted mean for each chunk (batch_size, N, hidden_dim)
weighted_means = torch.einsum(
"bns,bsh->bnh", gaussians.to(token_embeddings.dtype), token_embeddings
)
# Blend with standard mean pooling
# (batch_size, N, hidden_dim)
combined_embeddings = (1 - self.alpha) * standard_mean.unsqueeze(
1
) + self.alpha * weighted_means
# Add an embedding for the entire document at index 0
# (batch_size, N+1, hidden_dim)
combined_embeddings = torch.cat(
[torch.zeros_like(combined_embeddings[:, :1]), combined_embeddings], 1
)
combined_embeddings[:, 0:1, :] = standard_mean.unsqueeze(1)
# Select the indicator if provided
if chunk_indicators is not None:
combined_embeddings = combined_embeddings[
torch.arange(combined_embeddings.size(0)), chunk_indicators
]
# Normalize all the embeddings
combined_embeddings = torch.nn.functional.normalize(
combined_embeddings, p=2, dim=-1
)
# Flatten final embeddings (batch_size, hidden_dim * (N+1))
if chunk_indicators is None:
sentence_embedding = combined_embeddings.reshape(
batch_size, hidden_dim * (self.coverage_chunks + 1)
)
else:
sentence_embedding = combined_embeddings
# Return the final flattened entence embedding
features["sentence_embedding"] = sentence_embedding
return features
def use_gaussian_coverage_pooling(m, coverage_chunks=10, sigma=0.05, alpha=1.0):
"""
Add custom pooling layer that computes weighted mean pooling using Gaussian-based weights.
Args:
m (SentenceTransformer): The model to add pooling layer to.
coverage_chunks (int): Number of weighted pooling operations (N).
sigma (float): Standard deviation for Gaussian weighting.
alpha (float): Weighting factor for merging with standard mean pooling.
"""
if isinstance(m[1], GaussianCoveragePooling):
m = unuse_gaussian_coverage_pooling(m)
word_embedding_model = m[0]
custom_pooling = GaussianCoveragePooling(
coverage_chunks=coverage_chunks, sigma=sigma, alpha=alpha
)
old_pooling = m[1]
new_m = m.__class__(modules=[word_embedding_model, custom_pooling])
new_m.old_pooling = {"old_pooling": old_pooling}
return new_m
def unuse_gaussian_coverage_pooling(m):
"""
Removes the custom pooling layer.
Args:
m (SentenceTransformer): The model to remove the pooling layer from.
"""
if isinstance(m[1], GaussianCoveragePooling):
new_m = m.__class__(modules=[m[0], m.old_pooling["old_pooling"]])
return new_m
else:
return m
class InstructionTemplateRetriever:
FINETEMPLATES_REVISION = "4c8f22e0d6521a634ed12e3ebd4c438cf8f0c7fa"
RETRIEVAL_EMBEDDING_NAME = (
"fineinstructions/instruction_template_retrieval_embedding"
)
RETRIEVAL_EMBEDDING_REVISION = "db4efbde126216250ffa5a356663fc7da3bf7856"
def __init__(
self,
coverage_chunks=10,
sigma=0.05,
alpha=1.0,
nprobe=150,
):
"""
Computes embeddings that cover a document to find relevant
instruction templates using Gaussian-weighted embeddings that cover
different parts of the document.
Args:
coverage_chunks (int): The number of equally sized chunks/sections
to get coverage over the entire document.
sigma (float): Standard deviation for Gaussian weighting, this
will essentially control how "wide" / "focused" each chunk is.
alpha (float): A weighting factor to control how much to balance
the representation of a single chunk, versus the representation of
the entire document.
nprobe (int): The number of probes to use when searching the FAISS
index (larger is more accurate, but slower).
"""
self.d = load_dataset(
"fineinstructions/finetemplates",
revision=InstructionTemplateRetriever.FINETEMPLATES_REVISION,
split="full",
)
self.m = SentenceTransformer(
InstructionTemplateRetriever.RETRIEVAL_EMBEDDING_NAME,
revision=InstructionTemplateRetriever.RETRIEVAL_EMBEDDING_REVISION,
device="cpu",
)
self.m = use_gaussian_coverage_pooling(
self.m, coverage_chunks=coverage_chunks, sigma=sigma, alpha=alpha
)
self.index = faiss.read_index(
hf_hub_download(
"fineinstructions/finetemplates",
"faiss_index/finetemplates.index",
revision=InstructionTemplateRetriever.FINETEMPLATES_REVISION,
repo_type="dataset",
),
faiss.IO_FLAG_MMAP | faiss.IO_FLAG_READ_ONLY,
)
self.index.nprobe = nprobe
if torch.cuda.is_available():
self.m = self.m.to("cuda")
elif torch.backends.mps.is_available():
self.m = self.m.to("mps")
with open(
hf_hub_download(
"fineinstructions/finetemplates",
"faiss_index/reweighting_stats.pkl",
revision=InstructionTemplateRetriever.FINETEMPLATES_REVISION,
repo_type="dataset",
),
"rb",
) as reweighting_stats_fp:
reweighting_stats = pickle.load(reweighting_stats_fp)
self.resampling_weights = reweighting_stats["resampling_weights"]
self.template_variable_count_mapping = reweighting_stats[
"template_variable_count_mapping"
]
def _filter_rows(self, rows, filter_string):
if not rows:
return []
df = pd.DataFrame(rows)
try:
filtered_df = df.query(filter_string)
return filtered_df.to_dict(orient="records")
except Exception as e:
return rows
def search(
self,
document,
filters="",
search_k=20000,
max_results=250,
deduplicate=True,
reweight=False,
reweight_epsilon=0.05,
):
"""
Given a document
Args:
document (str): The document to retrieve relevant instruction templates for.
filters (str): A query string in the format of pandas.DataFrame.query()
search_k (int): The number of search results to pull when retrieving from FAISS.
max_results (int): The max number of results to return.
deduplicate (bool): Deduplicate results between coverage sections.
reweight (bool): Whether to reweight the results based on a more realistic length distribution.
reweight_epsilon (float): How tolerant to be when reweighting (larger is more inaccurate results but better reweighting)
"""
def _reweight(inp, k=None):
if reweight:
inp0, inp = itertools.tee(inp)
first_row = next(inp0)
r = Random(first_row[1].item())
epsilon = reweight_epsilon
bucket = first_row[1]
items = []
weights = []
for i, s in inp:
if abs(bucket - s.item()) <= epsilon:
items.append((i, s))
weights.append(
self.resampling_weights[
self.template_variable_count_mapping[i.item()]
]
)
else:
break
return r.choices(
items, weights=weights, k=(len(items) if k is None else k)
)
else:
return inp
# Search FAISS index
vecs = self.m.encode([document], normalize_embeddings=False).reshape(
-1, self.m[0].auto_model.config.hidden_size
)
scores_batch, indices_batch = self.index.search(np.vstack(vecs), k=search_k)
# Pull in FineTemplates rows into memory
to_select = [i.item() for i in itertools.chain.from_iterable(indices_batch)]
d_in_mem = {
i: row for i, row in zip(to_select, self.d.select(to_select).to_list())
}
# Group by coverage chunk
true_coverage_chunks = self.m[1].coverage_chunks + 1
scores_per_input, indices_per_input = (
[
scores_batch[i : i + true_coverage_chunks]
for i in range(0, len(scores_batch), true_coverage_chunks)
],
[
indices_batch[i : i + true_coverage_chunks]
for i in range(0, len(indices_batch), true_coverage_chunks)
],
)
# Get the results for the first result in the batch (assuming bz=1)
scores_per_input, indices_per_input = scores_per_input[0], indices_per_input[0]
# Create result rows
rows = [
[
{
"coverage_section": f"{chunk_idx}/{self.m[1].coverage_chunks}"
if chunk_idx > 0
else "Entire Document",
"score": s.item(),
**d_in_mem[i.item()],
}
for i, s in _reweight(zip(indices, scores), k=None)
]
for chunk_idx, (indices, scores) in enumerate(
zip(indices_per_input, scores_per_input)
)
]
# Deduplicate
if deduplicate:
seen = set()
rows = [
r
for r in itertools.chain.from_iterable(zip(*rows))
if (len(seen) != len(seen.add(r["template_id"]) or seen))
]
else:
rows = list(itertools.chain.from_iterable(zip(*rows)))
# Filter
rows = self._filter_rows(rows, filters)[:max_results]
# Return rows
return rows
|