Pushed by DataDreamer
Browse filesUpdate datadreamer.json
- datadreamer.json +53 -0
datadreamer.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_card": {
|
3 |
+
"Date & Time": "2025-03-03T18:31:20.155958",
|
4 |
+
"Model Card": [
|
5 |
+
"https://huggingface.co/BAAI/bge-m3"
|
6 |
+
],
|
7 |
+
"License Information": [
|
8 |
+
"mit"
|
9 |
+
],
|
10 |
+
"Citation Information": [
|
11 |
+
"\n@inproceedings{Wolf_Transformers_State-of-the-Art_Natural_2020,\n author = {Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien",
|
12 |
+
"\n@Misc{peft,\n title = {PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods},\n author = {Sourab Mangrulkar and Sylvain Gugger and Lysandre Debut and Younes",
|
13 |
+
"@misc{bge-m3,\n title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation}, \n author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},\n year={2024},\n eprint={2402.03216},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}",
|
14 |
+
"@inproceedings{reimers-2019-sentence-bert,\n title = \"Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks\",\n author = \"Reimers, Nils and Gurevych, Iryna\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing\",\n month = \"11\",\n year = \"2019\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://arxiv.org/abs/1908.10084\",\n}"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"data_card": {
|
18 |
+
"Raw Rows": {
|
19 |
+
"Date & Time": "2025-03-03T18:26:28.196376"
|
20 |
+
},
|
21 |
+
"Raw Rows (train split)": {
|
22 |
+
"Date & Time": "2025-03-03T18:26:28.313051"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"__version__": "0.46.0",
|
26 |
+
"datetime": "2025-03-03T18:28:16.948939",
|
27 |
+
"type": "TrainSentenceTransformer",
|
28 |
+
"name": "Train Matching Embedding",
|
29 |
+
"version": 1.0,
|
30 |
+
"fingerprint": "abe286abeaaa3dd7",
|
31 |
+
"req_versions": {
|
32 |
+
"dill": "0.3.8",
|
33 |
+
"sqlitedict": "2.1.0",
|
34 |
+
"torch": "2.5.1",
|
35 |
+
"numpy": "1.26.4",
|
36 |
+
"transformers": "4.48.2",
|
37 |
+
"datasets": "3.2.0",
|
38 |
+
"huggingface_hub": "0.27.1",
|
39 |
+
"accelerate": "1.3.0",
|
40 |
+
"peft": "0.14.0",
|
41 |
+
"tiktoken": "0.9.0",
|
42 |
+
"tokenizers": "0.21.0",
|
43 |
+
"openai": "1.59.8",
|
44 |
+
"ctransformers": "0.2.27",
|
45 |
+
"optimum": "1.23.3",
|
46 |
+
"bitsandbytes": "0.45.0",
|
47 |
+
"litellm": "1.57.8",
|
48 |
+
"trl": "0.9.6",
|
49 |
+
"setfit": "1.1.1",
|
50 |
+
"vllm": "0.7.0"
|
51 |
+
},
|
52 |
+
"interpreter": "3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:27:36) [GCC 13.3.0]"
|
53 |
+
}
|