firqaaa commited on
Commit
455df2b
1 Parent(s): f143bda

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -8
README.md CHANGED
@@ -8,7 +8,7 @@ tags:
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -26,9 +26,12 @@ Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
 
 
 
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
@@ -51,11 +54,15 @@ def mean_pooling(model_output, attention_mask):
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
 
 
 
 
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -85,7 +92,7 @@ The model was trained with the parameters:
85
 
86
  **DataLoader**:
87
 
88
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 19861 with parameters:
89
  ```
90
  {'batch_size': 16}
91
  ```
@@ -126,4 +133,4 @@ SentenceTransformer(
126
 
127
  ## Citing & Authors
128
 
129
- <!--- Describe where people can find more information -->
 
8
 
9
  ---
10
 
11
+ # indo-sbert-base
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
 
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
+ sentences = ["Ibukota Perancis adalah Paris",
30
+ "Menara Eifel terletak di Paris, Perancis",
31
+ "Pizza adalah makanan khas Italia",
32
+ "Saya kuliah di Carneige Melon University"]
33
 
34
+ model = SentenceTransformer('firqaaa/indo-sbert-finetuned-anli-id')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
 
54
 
55
 
56
  # Sentences we want sentence embeddings for
57
+ sentences = ["Ibukota Perancis adalah Paris",
58
+ "Menara Eifel terletak di Paris, Perancis",
59
+ "Pizza adalah makanan khas Italia",
60
+ "Saya kuliah di Carneige Melon University"]
61
+
62
 
63
  # Load model from HuggingFace Hub
64
+ tokenizer = AutoTokenizer.from_pretrained('firqaaa/indo-sbert-finetuned-anli-id')
65
+ model = AutoModel.from_pretrained('firqaaa/indo-sbert-finetuned-anli-id')
66
 
67
  # Tokenize sentences
68
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
92
 
93
  **DataLoader**:
94
 
95
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 19644 with parameters:
96
  ```
97
  {'batch_size': 16}
98
  ```
 
133
 
134
  ## Citing & Authors
135
 
136
+ <!--- Describe where people can find more information -->