--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: timur:unggul di atas tetangga di jalan 6 timur, taj mahal juga sangat sebanding, dalam kualitas makanan, dengan baluchi yang terlalu dipuji (dan kurang layak). - text: makanan:saya sangat merekomendasikan cafe st bart's untuk makanan mereka, suasana dan layanan yang luar biasa melayani - text: terong parmesan:parmesan terung juga enak, dan teman saya yang besar di manhattan metakan bahwa tidak ada orang yang pantas mendapatkan ziti panggang yang lebih enak dengan saus daging terong parmesan - text: tuna lelehan:kami memesan tuna lelehan - itu datang dengan keluar keju yang ha membuat sandwich tuna daging tuna - text: manhattan metakan:parmesan terung juga enak, dan teman saya yang besar di manhattan metakan bahwa tidak ada orang yang pantas mendapatkan ziti panggang yang lebih enak dengan saus daging ziti panggang dengan saus daging pipeline_tag: text-classification inference: false base_model: firqaaa/indo-sentence-bert-base model-index: - name: SetFit Aspect Model with firqaaa/indo-sentence-bert-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9087072065030483 name: Accuracy --- # SetFit Aspect Model with firqaaa/indo-sentence-bert-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [firqaaa/indo-setfit-absa-bert-base-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-aspect) - **SetFitABSA Polarity Model:** [firqaaa/indo-setfit-absa-bert-base-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9087 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "firqaaa/indo-setfit-absa-bert-base-restaurants-aspect", "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 2 | 19.7819 | 59 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 2939 | | aspect | 1468 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:--------:|:-------------:|:---------------:| | 0.0000 | 1 | 0.3135 | - | | 0.0001 | 50 | 0.3401 | - | | 0.0001 | 100 | 0.3212 | - | | 0.0002 | 150 | 0.3641 | - | | 0.0003 | 200 | 0.3317 | - | | 0.0004 | 250 | 0.2809 | - | | 0.0004 | 300 | 0.2446 | - | | 0.0005 | 350 | 0.284 | - | | 0.0006 | 400 | 0.3257 | - | | 0.0007 | 450 | 0.2996 | - | | 0.0007 | 500 | 0.209 | 0.295 | | 0.0008 | 550 | 0.2121 | - | | 0.0009 | 600 | 0.2204 | - | | 0.0010 | 650 | 0.3023 | - | | 0.0010 | 700 | 0.3253 | - | | 0.0011 | 750 | 0.233 | - | | 0.0012 | 800 | 0.3131 | - | | 0.0013 | 850 | 0.2873 | - | | 0.0013 | 900 | 0.2028 | - | | 0.0014 | 950 | 0.2608 | - | | 0.0015 | 1000 | 0.2842 | 0.2696 | | 0.0016 | 1050 | 0.2297 | - | | 0.0016 | 1100 | 0.266 | - | | 0.0017 | 1150 | 0.2771 | - | | 0.0018 | 1200 | 0.2347 | - | | 0.0019 | 1250 | 0.2539 | - | | 0.0019 | 1300 | 0.3409 | - | | 0.0020 | 1350 | 0.2925 | - | | 0.0021 | 1400 | 0.2608 | - | | 0.0021 | 1450 | 0.2792 | - | | 0.0022 | 1500 | 0.261 | 0.2636 | | 0.0023 | 1550 | 0.2596 | - | | 0.0024 | 1600 | 0.2563 | - | | 0.0024 | 1650 | 0.2329 | - | | 0.0025 | 1700 | 0.2954 | - | | 0.0026 | 1750 | 0.3329 | - | | 0.0027 | 1800 | 0.2138 | - | | 0.0027 | 1850 | 0.2591 | - | | 0.0028 | 1900 | 0.268 | - | | 0.0029 | 1950 | 0.2144 | - | | 0.0030 | 2000 | 0.2361 | 0.2586 | | 0.0030 | 2050 | 0.2322 | - | | 0.0031 | 2100 | 0.2646 | - | | 0.0032 | 2150 | 0.2018 | - | | 0.0033 | 2200 | 0.2579 | - | | 0.0033 | 2250 | 0.2501 | - | | 0.0034 | 2300 | 0.2657 | - | | 0.0035 | 2350 | 0.2272 | - | | 0.0036 | 2400 | 0.2383 | - | | 0.0036 | 2450 | 0.2615 | - | | 0.0037 | 2500 | 0.2818 | 0.2554 | | 0.0038 | 2550 | 0.2616 | - | | 0.0039 | 2600 | 0.2225 | - | | 0.0039 | 2650 | 0.2749 | - | | 0.0040 | 2700 | 0.2572 | - | | 0.0041 | 2750 | 0.2729 | - | | 0.0041 | 2800 | 0.2559 | - | | 0.0042 | 2850 | 0.2363 | - | | 0.0043 | 2900 | 0.2518 | - | | 0.0044 | 2950 | 0.1948 | - | | 0.0044 | 3000 | 0.2842 | 0.2538 | | 0.0045 | 3050 | 0.2243 | - | | 0.0046 | 3100 | 0.2186 | - | | 0.0047 | 3150 | 0.2829 | - | | 0.0047 | 3200 | 0.2101 | - | | 0.0048 | 3250 | 0.2156 | - | | 0.0049 | 3300 | 0.2539 | - | | 0.0050 | 3350 | 0.3005 | - | | 0.0050 | 3400 | 0.2699 | - | | 0.0051 | 3450 | 0.2431 | - | | 0.0052 | 3500 | 0.2931 | 0.2515 | | 0.0053 | 3550 | 0.2032 | - | | 0.0053 | 3600 | 0.2451 | - | | 0.0054 | 3650 | 0.2419 | - | | 0.0055 | 3700 | 0.2267 | - | | 0.0056 | 3750 | 0.2945 | - | | 0.0056 | 3800 | 0.2689 | - | | 0.0057 | 3850 | 0.2596 | - | | 0.0058 | 3900 | 0.2978 | - | | 0.0059 | 3950 | 0.2876 | - | | 0.0059 | 4000 | 0.2484 | 0.2482 | | 0.0060 | 4050 | 0.2698 | - | | 0.0061 | 4100 | 0.2155 | - | | 0.0061 | 4150 | 0.2474 | - | | 0.0062 | 4200 | 0.2683 | - | | 0.0063 | 4250 | 0.2979 | - | | 0.0064 | 4300 | 0.2866 | - | | 0.0064 | 4350 | 0.2604 | - | | 0.0065 | 4400 | 0.1989 | - | | 0.0066 | 4450 | 0.2708 | - | | 0.0067 | 4500 | 0.2705 | 0.2407 | | 0.0067 | 4550 | 0.2144 | - | | 0.0068 | 4600 | 0.2503 | - | | 0.0069 | 4650 | 0.2193 | - | | 0.0070 | 4700 | 0.1796 | - | | 0.0070 | 4750 | 0.2384 | - | | 0.0071 | 4800 | 0.1933 | - | | 0.0072 | 4850 | 0.2248 | - | | 0.0073 | 4900 | 0.22 | - | | 0.0073 | 4950 | 0.2052 | - | | 0.0074 | 5000 | 0.2314 | 0.224 | | 0.0075 | 5050 | 0.2279 | - | | 0.0076 | 5100 | 0.2198 | - | | 0.0076 | 5150 | 0.2332 | - | | 0.0077 | 5200 | 0.1666 | - | | 0.0078 | 5250 | 0.1949 | - | | 0.0079 | 5300 | 0.1802 | - | | 0.0079 | 5350 | 0.2496 | - | | 0.0080 | 5400 | 0.2399 | - | | 0.0081 | 5450 | 0.2042 | - | | 0.0082 | 5500 | 0.1859 | 0.2077 | | 0.0082 | 5550 | 0.2216 | - | | 0.0083 | 5600 | 0.1227 | - | | 0.0084 | 5650 | 0.2351 | - | | 0.0084 | 5700 | 0.2735 | - | | 0.0085 | 5750 | 0.1008 | - | | 0.0086 | 5800 | 0.1568 | - | | 0.0087 | 5850 | 0.1211 | - | | 0.0087 | 5900 | 0.0903 | - | | 0.0088 | 5950 | 0.1473 | - | | 0.0089 | 6000 | 0.1167 | 0.1877 | | 0.0090 | 6050 | 0.206 | - | | 0.0090 | 6100 | 0.2392 | - | | 0.0091 | 6150 | 0.116 | - | | 0.0092 | 6200 | 0.1493 | - | | 0.0093 | 6250 | 0.1373 | - | | 0.0093 | 6300 | 0.1163 | - | | 0.0094 | 6350 | 0.0669 | - | | 0.0095 | 6400 | 0.0756 | - | | 0.0096 | 6450 | 0.0788 | - | | 0.0096 | 6500 | 0.1816 | 0.1838 | | 0.0097 | 6550 | 0.1288 | - | | 0.0098 | 6600 | 0.0946 | - | | 0.0099 | 6650 | 0.1374 | - | | 0.0099 | 6700 | 0.2167 | - | | 0.0100 | 6750 | 0.0759 | - | | 0.0101 | 6800 | 0.1543 | - | | 0.0102 | 6850 | 0.0573 | - | | 0.0102 | 6900 | 0.1169 | - | | 0.0103 | 6950 | 0.0294 | - | | **0.0104** | **7000** | **0.1241** | **0.1769** | | 0.0104 | 7050 | 0.0803 | - | | 0.0105 | 7100 | 0.0139 | - | | 0.0106 | 7150 | 0.01 | - | | 0.0107 | 7200 | 0.0502 | - | | 0.0107 | 7250 | 0.0647 | - | | 0.0108 | 7300 | 0.0117 | - | | 0.0109 | 7350 | 0.0894 | - | | 0.0110 | 7400 | 0.0101 | - | | 0.0110 | 7450 | 0.0066 | - | | 0.0111 | 7500 | 0.0347 | 0.1899 | | 0.0112 | 7550 | 0.0893 | - | | 0.0113 | 7600 | 0.0127 | - | | 0.0113 | 7650 | 0.1285 | - | | 0.0114 | 7700 | 0.0049 | - | | 0.0115 | 7750 | 0.0571 | - | | 0.0116 | 7800 | 0.0068 | - | | 0.0116 | 7850 | 0.0586 | - | | 0.0117 | 7900 | 0.0788 | - | | 0.0118 | 7950 | 0.0655 | - | | 0.0119 | 8000 | 0.0052 | 0.1807 | | 0.0119 | 8050 | 0.0849 | - | | 0.0120 | 8100 | 0.0133 | - | | 0.0121 | 8150 | 0.0445 | - | | 0.0122 | 8200 | 0.0118 | - | | 0.0122 | 8250 | 0.0118 | - | | 0.0123 | 8300 | 0.063 | - | | 0.0124 | 8350 | 0.0751 | - | | 0.0124 | 8400 | 0.058 | - | | 0.0125 | 8450 | 0.002 | - | | 0.0126 | 8500 | 0.0058 | 0.1804 | | 0.0127 | 8550 | 0.0675 | - | | 0.0127 | 8600 | 0.0067 | - | | 0.0128 | 8650 | 0.0087 | - | | 0.0129 | 8700 | 0.0028 | - | | 0.0130 | 8750 | 0.0626 | - | | 0.0130 | 8800 | 0.0563 | - | | 0.0131 | 8850 | 0.0012 | - | | 0.0132 | 8900 | 0.0067 | - | | 0.0133 | 8950 | 0.0011 | - | | 0.0133 | 9000 | 0.0105 | 0.189 | | 0.0134 | 9050 | 0.101 | - | | 0.0135 | 9100 | 0.1162 | - | | 0.0136 | 9150 | 0.0593 | - | | 0.0136 | 9200 | 0.0004 | - | | 0.0137 | 9250 | 0.0012 | - | | 0.0138 | 9300 | 0.0022 | - | | 0.0139 | 9350 | 0.0033 | - | | 0.0139 | 9400 | 0.0025 | - | | 0.0140 | 9450 | 0.0578 | - | | 0.0141 | 9500 | 0.0012 | 0.1967 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - spaCy: 3.7.4 - Transformers: 4.36.2 - PyTorch: 2.1.2+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```