|
import dataclasses |
|
from enum import Enum |
|
from typing import Any, Dict, List, Optional |
|
|
|
import transformers |
|
|
|
|
|
@dataclasses.dataclass |
|
class LoraConfigSimplified: |
|
""" |
|
Low Rank Approximation (LoRA) configuration. |
|
|
|
Used for language and audio models separately. |
|
""" |
|
|
|
|
|
r: int = 0 |
|
lora_alpha: float = 8 |
|
target_modules: Optional[List[str]] = dataclasses.field( |
|
default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"] |
|
) |
|
|
|
unfreeze_layers: Optional[List[str]] = None |
|
|
|
|
|
class LossFunction(str, Enum): |
|
CrossEntropy = "ce" |
|
KL_Divergence = "kl" |
|
|
|
|
|
@dataclasses.dataclass |
|
class LossConfig: |
|
loss_function: LossFunction = LossFunction.CrossEntropy |
|
kl_temperature: float = 2.0 |
|
|
|
@property |
|
def requires_alt_fields(self): |
|
return self.loss_function == LossFunction.KL_Divergence |
|
|
|
|
|
class UltravoxConfig(transformers.PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an |
|
Ultravox model according to the specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
audio_config (`Wav2Vec2Config`, *optional*): |
|
Custom audio config or dict |
|
text_config (`Union[AutoConfig, dict]`, *optional*): |
|
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. |
|
ignore_index (`int`, *optional*, defaults to -100): |
|
The ignore index for the loss function. |
|
audio_token_index (`int`, *optional*, defaults to 32000): |
|
The audio token index to encode the audio prompt. |
|
stack_factor (`int`, *optional*, defaults to 8): |
|
Audio downsampling factor for the multimodal projector. |
|
norm_init (`float`, *optional*, defaults to 0.4): |
|
The initialization value for the layer normalization. |
|
projector_act (`str`, *optional*, defaults to `"swiglu"`): |
|
The activation function used by the multimodal projector. |
|
text_model_lora_config (`LoraConfigSimplified`, *optional*): |
|
The LoRA configuration for finetuning the text model. |
|
audio_model_lora_config (`LoraConfigSimplified`, *optional*): |
|
The LoRA configuration for finetuning the audio model. |
|
audio_latency_block_size (`int`, *optional*, defaults to `None`): |
|
The latency block size for simulating audio streaming. |
|
|
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import UltravoxForConditionalGeneration, Wav2Vec2Config, UltravoxConfig, LlamaConfig |
|
|
|
>>> # Initializing an audio encoder config |
|
>>> audio_config = Wav2Vec2Config() |
|
|
|
>>> # Initializing a Llama config |
|
>>> text_config = LlamaConfig() |
|
|
|
>>> # Initializing a default configuration |
|
>>> configuration = UltravoxConfig(audio_config, text_config) |
|
|
|
>>> # Initializing a completely untrained model from the configuration |
|
>>> model = UltravoxForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
|
|
>>> # Initialize a model from pretrained checkpoints and random projector weights |
|
>>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf") |
|
```""" |
|
|
|
model_type = "ultravox" |
|
is_composition = False |
|
|
|
def __init__( |
|
self, |
|
audio_config: Optional[Dict[str, Any]] = None, |
|
text_config: Optional[Dict[str, Any]] = None, |
|
audio_model_id: Optional[str] = None, |
|
text_model_id: Optional[str] = None, |
|
ignore_index: int = -100, |
|
hidden_size: int = 4096, |
|
stack_factor: int = 8, |
|
norm_init: float = 0.4, |
|
projector_act: str = "swiglu", |
|
final_projection: Optional[int] = None, |
|
last_layer_norm: bool = True, |
|
text_model_lora_config: Optional[LoraConfigSimplified] = None, |
|
audio_model_lora_config: Optional[LoraConfigSimplified] = None, |
|
audio_latency_block_size: Optional[int] = None, |
|
**kwargs, |
|
): |
|
self.ignore_index = ignore_index |
|
|
|
self.audio_model_id = audio_model_id |
|
self.text_model_id = text_model_id |
|
|
|
self.hidden_size = hidden_size |
|
self.stack_factor = stack_factor |
|
self.norm_init = norm_init |
|
self.projector_act = projector_act |
|
self.final_projection = final_projection |
|
self.last_layer_norm = last_layer_norm |
|
|
|
if text_model_id is not None: |
|
self.text_config: transformers.LlamaConfig = ( |
|
transformers.AutoConfig.from_pretrained(text_model_id) |
|
) |
|
else: |
|
text_config = text_config or {} |
|
self.text_config = transformers.CONFIG_MAPPING[ |
|
text_config.get("model_type", "llama") |
|
](**text_config) |
|
|
|
if audio_model_id is not None: |
|
self.audio_config: transformers.PretrainedConfig = ( |
|
transformers.AutoConfig.from_pretrained(audio_model_id) |
|
) |
|
else: |
|
audio_config = audio_config or {} |
|
self.audio_config = transformers.CONFIG_MAPPING[ |
|
audio_config.get("model_type", "wav2vec2") |
|
](**audio_config) |
|
|
|
self.text_model_lora_config = ( |
|
text_model_lora_config |
|
if isinstance(text_model_lora_config, dict) |
|
else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified()) |
|
) |
|
self.audio_model_lora_config = ( |
|
audio_model_lora_config |
|
if isinstance(audio_model_lora_config, dict) |
|
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified()) |
|
) |
|
self.audio_latency_block_size = audio_latency_block_size |
|
|
|
self.vocab_size = self.text_config.vocab_size |
|
|
|
self.initializer_range = self.text_config.initializer_range |
|
|
|
super().__init__(**kwargs) |
|
|
|
def to_diff_dict(self) -> Dict[str, Any]: |
|
diff_dict = super().to_diff_dict() |
|
|
|
|
|
if self.text_model_id is not None: |
|
diff_dict.pop("text_config", None) |
|
if self.audio_model_id is not None: |
|
diff_dict.pop("audio_config", None) |
|
|
|
return diff_dict |
|
|