File size: 4,020 Bytes
298e8c7
717ea4e
 
a45a941
298e8c7
f29c0a8
 
 
 
 
c024771
298e8c7
 
15c4eae
298e8c7
8115677
 
298e8c7
 
 
 
 
 
717ea4e
f29c0a8
717ea4e
298e8c7
717ea4e
 
298e8c7
717ea4e
 
298e8c7
8115677
298e8c7
717ea4e
8115677
298e8c7
81f5118
298e8c7
81f5118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7978a56
7fa1a9b
 
 
 
7978a56
fb6249a
81f5118
298e8c7
 
 
 
f29c0a8
 
 
 
298e8c7
 
f29c0a8
298e8c7
 
 
 
f29c0a8
298e8c7
 
 
 
f29c0a8
8115677
f29c0a8
298e8c7
8115677
298e8c7
f29c0a8
298e8c7
8115677
298e8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f29c0a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
language:
- en
license: mit
library_name: transformers
datasets:
- fnlp/AnyInstruct
- fixie-ai/boolq-audio
- fixie-ai/soda-audio
- speechcolab/gigaspeech
pipeline_tag: audio-text-to-text
---

# Model Card for Ultravox

Ultravox is a multimodal Speech LLM built around a pretrained [Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) and [Whisper-small](https://huggingface.co/openai/whisper-small) backbone.\
See https://ultravox.ai for the GitHub repo and more information.


## Model Details

### Model Description

Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message). 
The input to the model is given as a text prompt with a special `<|audio|>` pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio.
Using the merged embeddings as input, the model will then generate output text as usual. 

In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output.
No preference tuning has been applied to this revision of the model.

- **Developed by:** Fixie.ai
- **License:** MIT

### Model Sources

- **Repository:** https://ultravox.ai
- **Demo:** See repo

## Usage

Think of the model as an LLM that can also hear and understand speech. As such, it can be used as a voice agent,  and also to do speech-to-speech translation, analysis of spoken audio, etc.

To use the model, try the following:
```python
# pip install transformers peft librosa

import transformers
import numpy as np
import librosa

pipe = transformers.pipeline(model='fixie-ai/ultravox-v0_2', trust_remote_code=True)

path = "<path-to-input-audio>"  # TODO: pass the audio here
audio, sr = librosa.load(path, sr=16000)


turns = [
  {
    "role": "system",
    "content": "You are a friendly and helpful character. You love to answer questions for people."
  },
]
pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=30)
```


## Training Details

The model uses a pre-trained [Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) backbone as well as the encoder part of [Whisper-small](https://huggingface.co/openai/whisper-small).

The multi-modal projector is first trained (while keeping backbones frozen) in stage 1 and then in stage 2, Llama3 is also fine-tuned using LoRA.

### Training Data

Training dataset is a mix of ASR datasets (Gigaspeech), instruction-following and QA data (AnyInstruct and an extended version of BoolQ), and conversational data (SODA with alternative generations for last two turns).


### Training Procedure

Supervised speech to audio finetuning. For more info, see [training code in Ultravox repo](https://github.com/fixie-ai/ultravox/blob/main/ultravox/training/train.py).


#### Training Hyperparameters

- **Training regime:** BF16 mixed precision training
- **Hardward used:** 8x A100-40GB GPUs
- **LLM LoRA Rank:** 64

#### Speeds, Sizes, Times

The current version of Ultravox, when invoked with audio content, has a time-to-first-token (TTFT) of approximately 200ms, and a tokens-per-second rate of ~50-100 when using an A100-40GB GPU, all using a Llama 3 8B backbone.

Check out the audio tab on [TheFastest.ai](https://thefastest.ai/?m=audio) for daily benchmarks and a comparison with other existing models.

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary