ultravox-v0_4_1-llama-3_1-8b / ultravox_config.py
zqhuang's picture
Upload UltravoxPipeline
9767b96 verified
raw
history blame
6.04 kB
import dataclasses
from enum import Enum
from typing import Any, Dict, List, Optional
import transformers
@dataclasses.dataclass
class LoraConfigSimplified:
"""
Low Rank Approximation (LoRA) configuration.
Used for language and audio models separately.
"""
# The rank of the approximation
r: int = 0
lora_alpha: float = 8
target_modules: Optional[List[str]] = dataclasses.field(
default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
)
class LossFunction(str, Enum):
CrossEntropy = "ce"
KL_Divergence = "kl"
@dataclasses.dataclass
class LossConfig:
loss_function: LossFunction = LossFunction.KL_Divergence
kl_temperature: float = 2.0
@property
def requires_alt_fields(self):
return self.loss_function == LossFunction.KL_Divergence
class UltravoxConfig(transformers.PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
Ultravox model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
audio_config (`Wav2Vec2Config`, *optional*):
Custom audio config or dict
text_config (`Union[AutoConfig, dict]`, *optional*):
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
audio_token_index (`int`, *optional*, defaults to 32000):
The audio token index to encode the audio prompt.
stack_factor (`int`, *optional*, defaults to 8):
Audio downsampling factor for the multimodal projector.
norm_init (`float`, *optional*, defaults to 0.4):
The initialization value for the layer normalization.
projector_act (`str`, *optional*, defaults to `"swiglu"`):
The activation function used by the multimodal projector.
text_model_lora_config (`LoraConfigSimplified`, *optional*):
The LoRA configuration for finetuning the text model.
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
The LoRA configuration for finetuning the audio model.
Example:
```python
>>> from transformers import UltravoxForConditionalGeneration, Wav2Vec2Config, UltravoxConfig, LlamaConfig
>>> # Initializing an audio encoder config
>>> audio_config = Wav2Vec2Config()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a default configuration
>>> configuration = UltravoxConfig(audio_config, text_config)
>>> # Initializing a completely untrained model from the configuration
>>> model = UltravoxForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # Initialize a model from pretrained checkpoints and random projector weights
>>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
```"""
model_type = "ultravox"
is_composition = False
def __init__(
self,
audio_config: Optional[Dict[str, Any]] = None,
text_config: Optional[Dict[str, Any]] = None,
audio_model_id: Optional[str] = None,
text_model_id: Optional[str] = None,
ignore_index: int = -100,
hidden_size: int = 4096,
stack_factor: int = 8,
norm_init: float = 0.4,
projector_act: str = "swiglu",
text_model_lora_config: Optional[LoraConfigSimplified] = None,
audio_model_lora_config: Optional[LoraConfigSimplified] = None,
**kwargs,
):
self.ignore_index = ignore_index
self.audio_model_id = audio_model_id
self.text_model_id = text_model_id
self.hidden_size = hidden_size
self.stack_factor = stack_factor
self.norm_init = norm_init
self.projector_act = projector_act
if text_model_id is not None:
self.text_config: transformers.LlamaConfig = (
transformers.AutoConfig.from_pretrained(text_model_id)
)
else:
text_config = text_config or {}
self.text_config = transformers.CONFIG_MAPPING[
text_config.get("model_type", "llama")
](**text_config)
if audio_model_id is not None:
self.audio_config: transformers.PretrainedConfig = (
transformers.AutoConfig.from_pretrained(audio_model_id)
)
else:
audio_config = audio_config or {}
self.audio_config = transformers.CONFIG_MAPPING[
audio_config.get("model_type", "wav2vec2")
](**audio_config)
self.text_model_lora_config = (
text_model_lora_config
if isinstance(text_model_lora_config, dict)
else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
)
self.audio_model_lora_config = (
audio_model_lora_config
if isinstance(audio_model_lora_config, dict)
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
)
self.vocab_size = self.text_config.vocab_size
self.initializer_range = self.text_config.initializer_range
super().__init__(**kwargs)
def to_diff_dict(self) -> Dict[str, Any]:
diff_dict = super().to_diff_dict()
# remove text_config and audio_config if text_model_id and audio_model_id are present
if self.text_model_id is not None:
diff_dict.pop("text_config", None)
if self.audio_model_id is not None:
diff_dict.pop("audio_config", None)
return diff_dict