Update README.md
Browse files
README.md
CHANGED
@@ -63,6 +63,32 @@ You can use this model just as any other HuggingFace models:
|
|
63 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
64 |
model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-1.5B-world', trust_remote_code=True)
|
65 |
tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-1.5B-world', trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
```
|
67 |
|
68 |
## Training Details
|
@@ -85,7 +111,7 @@ This model is trained on the World v3 with a total of 3.119 trillion tokens.
|
|
85 |
|
86 |
before conversion: ppl 4.13 acc 69.4%
|
87 |
|
88 |
-
after conversion: ppl 4.26 acc 68.8%
|
89 |
|
90 |
## FAQ
|
91 |
Q: safetensors metadata is none.
|
|
|
63 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
64 |
model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-1.5B-world', trust_remote_code=True)
|
65 |
tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-1.5B-world', trust_remote_code=True)
|
66 |
+
|
67 |
+
model = model.cuda()
|
68 |
+
prompt = "What is a large language model?"
|
69 |
+
messages = [
|
70 |
+
{"role": "user", "content": "Who are you?"},
|
71 |
+
{"role": "assistant", "content": "I am a GPT-3 based model."},
|
72 |
+
{"role": "user", "content": prompt}
|
73 |
+
]
|
74 |
+
text = tokenizer.apply_chat_template(
|
75 |
+
messages,
|
76 |
+
tokenize=False,
|
77 |
+
add_generation_prompt=True
|
78 |
+
)
|
79 |
+
|
80 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
81 |
+
|
82 |
+
generated_ids = model.generate(
|
83 |
+
**model_inputs,
|
84 |
+
max_new_tokens=1024,
|
85 |
+
)
|
86 |
+
generated_ids = [
|
87 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
88 |
+
]
|
89 |
+
|
90 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
91 |
+
print(response)
|
92 |
```
|
93 |
|
94 |
## Training Details
|
|
|
111 |
|
112 |
before conversion: ppl 4.13 acc 69.4%
|
113 |
|
114 |
+
after conversion: ppl 4.26 acc 68.8% (without apply temple)
|
115 |
|
116 |
## FAQ
|
117 |
Q: safetensors metadata is none.
|