alanakbik commited on
Commit
e074e36
1 Parent(s): db56834

initial commit

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -3,17 +3,17 @@ tags:
3
  - flair
4
  - token-classification
5
  - sequence-tagger-model
6
- language: de
7
  datasets:
8
  - conll2003
9
  inference: false
10
  ---
11
 
12
- ## German NER in Flair (large model)
13
 
14
- This is the large 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/).
15
 
16
- F1-Score: **92,31** (CoNLL-03 German revised)
17
 
18
  **! This model only works with Flair version 0.8 (will be released in the next few days) !**
19
 
@@ -39,10 +39,10 @@ from flair.data import Sentence
39
  from flair.models import SequenceTagger
40
 
41
  # load tagger
42
- tagger = SequenceTagger.load("flair/ner-german-large")
43
 
44
  # make example sentence
45
- sentence = Sentence("George Washington ging nach Washington")
46
 
47
  # predict NER tags
48
  tagger.predict(sentence)
@@ -64,7 +64,7 @@ Span [1,2]: "George Washington" [− Labels: PER (1.0)]
64
  Span [5]: "Washington" [− Labels: LOC (1.0)]
65
  ```
66
 
67
- So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*".
68
 
69
 
70
  ---
@@ -77,9 +77,9 @@ The following Flair script was used to train this model:
77
  import torch
78
 
79
  # 1. get the corpus
80
- from flair.datasets import CONLL_03_GERMAN
81
 
82
- corpus = CONLL_03_GERMAN()
83
 
84
  # 2. what tag do we want to predict?
85
  tag_type = 'ner'
@@ -119,7 +119,7 @@ trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
119
  # 7. run training with XLM parameters (20 epochs, small LR)
120
  from torch.optim.lr_scheduler import OneCycleLR
121
 
122
- trainer.train('resources/taggers/ner-german-large',
123
  learning_rate=5.0e-6,
124
  mini_batch_size=4,
125
  mini_batch_chunk_size=1,
 
3
  - flair
4
  - token-classification
5
  - sequence-tagger-model
6
+ language: nl
7
  datasets:
8
  - conll2003
9
  inference: false
10
  ---
11
 
12
+ ## Dutch NER in Flair (large model)
13
 
14
+ This is the large 4-class NER model for Dutch that ships with [Flair](https://github.com/flairNLP/flair/).
15
 
16
+ F1-Score: **95,25** (CoNLL-03 Dutch)
17
 
18
  **! This model only works with Flair version 0.8 (will be released in the next few days) !**
19
 
 
39
  from flair.models import SequenceTagger
40
 
41
  # load tagger
42
+ tagger = SequenceTagger.load("flair/ner-dutch-large")
43
 
44
  # make example sentence
45
+ sentence = Sentence("George Washington ging naar Washington")
46
 
47
  # predict NER tags
48
  tagger.predict(sentence)
 
64
  Span [5]: "Washington" [− Labels: LOC (1.0)]
65
  ```
66
 
67
+ So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging naar Washington*".
68
 
69
 
70
  ---
 
77
  import torch
78
 
79
  # 1. get the corpus
80
+ from flair.datasets import CONLL_03_DUTCH
81
 
82
+ corpus = CONLL_03_DUTCH()
83
 
84
  # 2. what tag do we want to predict?
85
  tag_type = 'ner'
 
119
  # 7. run training with XLM parameters (20 epochs, small LR)
120
  from torch.optim.lr_scheduler import OneCycleLR
121
 
122
+ trainer.train('resources/taggers/ner-dutch-large',
123
  learning_rate=5.0e-6,
124
  mini_batch_size=4,
125
  mini_batch_chunk_size=1,