--- tags: - flair - token-classification - sequence-tagger-model language: - en - de - fr - it - nl - pl - es - sv - da - no - fi - cs datasets: - ontonotes inference: false --- ## Multilingual Universal Part-of-Speech Tagging in Flair (default model) This is the default multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **98,47** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech) Predicts universal POS tags: | **tag** | **meaning** | |---------------------------------|-----------| |ADJ | adjective | | ADP | adposition | | ADV | adverb | | AUX | auxiliary | | CCONJ | coordinating conjunction | | DET | determiner | | INTJ | interjection | | NOUN | noun | | NUM | numeral | | PART | particle | | PRON | pronoun | | PROPN | proper noun | | PUNCT | punctuation | | SCONJ | subordinating conjunction | | SYM | symbol | | VERB | verb | | X | other | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/upos-multi") # make example sentence sentence = Sentence("Ich liebe Berlin, as they say. ") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('pos'): print(entity) ``` This yields the following output: ``` Span [1]: "Ich" [− Labels: PRON (0.9999)] Span [2]: "liebe" [− Labels: VERB (0.9999)] Span [3]: "Berlin" [− Labels: PROPN (0.9997)] Span [4]: "," [− Labels: PUNCT (1.0)] Span [5]: "as" [− Labels: SCONJ (0.9991)] Span [6]: "they" [− Labels: PRON (0.9998)] Span [7]: "say" [− Labels: VERB (0.9998)] Span [8]: "." [− Labels: PUNCT (1.0)] ``` So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import MultiCorpus from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \ UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH from flair.embeddings import StackedEmbeddings, FlairEmbeddings # 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large) corpus = MultiCorpus([ UD_ENGLISH(in_memory=False), UD_GERMAN(in_memory=False), UD_DUTCH(in_memory=False), UD_FRENCH(in_memory=False), UD_ITALIAN(in_memory=False), UD_SPANISH(in_memory=False), UD_POLISH(in_memory=False), UD_CZECH(in_memory=False), UD_DANISH(in_memory=False), UD_SWEDISH(in_memory=False), UD_NORWEGIAN(in_memory=False), UD_FINNISH(in_memory=False), ]) # 2. what tag do we want to predict? tag_type = 'upos' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # contextual string embeddings, forward FlairEmbeddings('multi-forward'), # contextual string embeddings, backward FlairEmbeddings('multi-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type, use_crf=False) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/upos-english-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).