--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1317 | 1.0 | 75 | 2.0386 | 0.33 | | 1.36 | 2.0 | 150 | 1.4142 | 0.58 | | 1.1456 | 3.0 | 225 | 1.1110 | 0.66 | | 0.6417 | 4.0 | 300 | 1.0142 | 0.69 | | 0.3324 | 5.0 | 375 | 0.5881 | 0.82 | | 0.2208 | 6.0 | 450 | 0.5516 | 0.84 | | 0.3346 | 7.0 | 525 | 0.5267 | 0.87 | | 0.2309 | 8.0 | 600 | 0.7404 | 0.8 | | 0.0267 | 9.0 | 675 | 0.6636 | 0.8 | | 0.0309 | 10.0 | 750 | 0.6390 | 0.84 | | 0.0076 | 11.0 | 825 | 0.6949 | 0.85 | | 0.0053 | 12.0 | 900 | 0.6405 | 0.87 | | 0.005 | 13.0 | 975 | 0.7065 | 0.84 | | 0.004 | 14.0 | 1050 | 0.8570 | 0.84 | | 0.0031 | 15.0 | 1125 | 0.6735 | 0.88 | | 0.0028 | 16.0 | 1200 | 0.7023 | 0.85 | | 0.0027 | 17.0 | 1275 | 0.6823 | 0.86 | | 0.0369 | 18.0 | 1350 | 0.7320 | 0.85 | | 0.0024 | 19.0 | 1425 | 0.6656 | 0.86 | | 0.0023 | 20.0 | 1500 | 0.6628 | 0.86 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3