File size: 1,756 Bytes
60164d3 b00dede 60164d3 b00dede 60164d3 b00dede 60164d3 b00dede 60164d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import requests
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from transformers import SamModel, SamProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SamModel.from_pretrained("flaviagiammarino/medsam-vit-base").to(device)
processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base")
img_url = "https://raw.githubusercontent.com/bowang-lab/MedSAM/main/assets/img_demo.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
input_boxes = [95., 255., 190., 350.]
inputs = processor(raw_image, input_boxes=[[input_boxes]], return_tensors="pt").to(device)
outputs = model(**inputs, multimask_output=False)
masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
def show_mask(mask, ax, random_color):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([251/255, 252/255, 30/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2))
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(np.array(raw_image))
show_box(input_boxes, ax[0])
ax[0].set_title("Input Image and Bounding Box")
ax[0].axis("off")
ax[1].imshow(np.array(raw_image))
show_mask(masks[0], ax=ax[1], random_color=False)
show_box(input_boxes, ax[1])
ax[1].set_title("MedSAM Segmentation")
ax[1].axis("off")
plt.tight_layout()
plt.show()
|