File size: 10,768 Bytes
2678216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from typing import Mapping
import torch
import math
from speechbrain.inference.interfaces import Pretrained


class AttentionMLP(torch.nn.Module):
    def __init__(self, input_dim, hidden_dim):
        super(AttentionMLP, self).__init__()
        self.layers = torch.nn.Sequential(
            torch.nn.Linear(input_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, 1, bias=False),
        )

    def forward(self, x):
        x = self.layers(x)
        att_w = torch.nn.functional.softmax(x, dim=2)
        return att_w


class Discrete_EmbeddingLayer(torch.nn.Module):
    """This class handles embedding layers  for discrete tokens.

    Arguments
    ---------
    num_codebooks: int ,
        number of codebooks of the tokenizer.
    vocab_size : int,
        size of the dictionary of embeddings
    emb_dim: int ,
        the size of each embedding vector
    pad_index: int (default: 0),
        If specified, the entries at padding_idx do not contribute to the gradient.
    init: boolean (default: False):
        If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
    freeze: boolean (default: False)
        If True, the embedding is frozen. If False, the model will be trained
        alongside with the rest of the pipeline.
    chunk_size: int
        The size of lengthwize chunks use when evaluating via
        Gumbel softmax

    Example
    -------
    >>> from speechbrain.lobes.models.huggingface_transformers.encodec import Encodec
    >>> model_hub = "facebook/encodec_24khz"
    >>> save_path = "savedir"
    >>> model = Encodec(model_hub, save_path)
    >>> audio = torch.randn(4, 1000)
    >>> length = torch.tensor([1.0, .5, .75, 1.0])
    >>> tokens, emb = model.encode(audio, length)
    >>> print(tokens.shape)
    torch.Size([4, 4, 2])
    >>> emb= Discrete_EmbeddingLayer(2, 1024, 1024)
    >>> in_emb = emb(tokens)
    >>> print(in_emb.shape)
    torch.Size([4, 4, 2, 1024])
    """

    def __init__(
        self,
        num_codebooks,
        vocab_size,
        emb_dim,
        pad_index=0,
        init=False,
        freeze=False,
        available_layers=None,
        layers=None,
        chunk_size=100,
    ):
        super(Discrete_EmbeddingLayer, self).__init__()
        self.vocab_size = vocab_size
        self.num_codebooks = num_codebooks
        self.freeze = freeze
        self.embedding = torch.nn.Embedding(
            num_codebooks * vocab_size, emb_dim
        ).requires_grad_(not self.freeze)
        self.init = init
        self.layers = layers
        self.available_layers = available_layers
        self.register_buffer("offsets", self.build_offsets())
        self.register_buffer("layer_embs", self.compute_layer_embs())
        self.chunk_size = chunk_size

    def init_embedding(self, weights):
        with torch.no_grad():
            self.embedding.weight = torch.nn.Parameter(weights)

    def build_offsets(self):
        offsets = torch.arange(
            0,
            self.num_codebooks * self.vocab_size,
            self.vocab_size,
        )
        if self.layers:
            selected_layers = set(self.layers)
            indexes = [
                idx for idx, layer in enumerate(self.available_layers)
                if layer in selected_layers
            ]
            offsets = offsets[indexes]
        return offsets

    def forward(self, in_tokens):
        """Computes the embedding for discrete tokens.
        a sample.

        Arguments
        ---------
        in_tokens : torch.Tensor
            A (Batch x Time x num_codebooks)
            audio sample
        Returns
        -------
        in_embs : torch.Tensor
        """
        with torch.set_grad_enabled(not self.freeze):
            #  Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
            in_tokens_offset = in_tokens + self.offsets.to(in_tokens.device)
            # Forward Pass to embedding and
            in_embs = self.embedding(in_tokens_offset.int())
            return in_embs

    def compute_layer_embs(self):
        weight = self.embedding.weight

        # Compute offsets
        layer_idx_map = {
            layer: idx
            for idx, layer in enumerate(self.available_layers)
        }
        layer_idx = [
            layer_idx_map[layer]
            for layer in self.layers
        ]

        offsets = [
            idx * self.vocab_size
            for idx in layer_idx
        ]

        layer_embs = torch.stack([
            weight[offset:offset + self.vocab_size]
            for offset in offsets
        ])

        # To (Batch x Length x Emb)
        layer_embs = layer_embs.unsqueeze(0).unsqueeze(0)
        return layer_embs

    def encode_logits(self, logits, length=None):
        """Computes waveforms from a batch of discrete units
        Arguments
        ---------
        units: torch.tensor
            Batch of discrete unit logits [batch, length, head, token]
            or tokens [batch, length, head]
        spk: torch.tensor
            Batch of speaker embeddings [batch, spk_dim]
        Returns
        -------
        waveforms: torch.tensor
            Batch of mel-waveforms [batch, 1, time]
        """

        # Convert logits to one-hot representations
        # without losing the gradient
        units_gumbel = torch.nn.functional.gumbel_softmax(
            logits,
            hard=False,
            dim=-1
        )

        # Straight-through trick
        _, argmax_idx = logits.max(dim=-1, keepdim=True)
        units_ref = torch.zeros_like(logits).scatter_(
            dim=-1, index=argmax_idx, src=torch.ones_like(logits)
        )
        units_hard = units_ref - units_gumbel.detach() + units_gumbel

        # Sum over embeddings for each layer
        units_hard_chunked = units_hard.chunk(
            math.ceil(units_hard.size(1) / self.chunk_size),
            dim=1
        )
        emb = torch.cat(
            [
                (self.layer_embs * units_hard_chunk.unsqueeze(-1)).sum(-2)
                for units_hard_chunk in units_hard_chunked
            ],
            dim=1
        )
        return emb

    def load_state_dict(self, state_dict, strict=True):
        result = super().load_state_dict(state_dict, strict)
        self.layer_embs = self.compute_layer_embs()
        return result


class DiscreteSpkEmb(Pretrained):
    """A ready-to-use class for utterance-level classification (e.g, speaker-id,
    language-id, emotion recognition, keyword spotting, etc).
    The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
    are defined in the yaml file. If you want to
    convert the predicted index into a corresponding text label, please
    provide the path of the label_encoder in a variable called 'lab_encoder_file'
    within the yaml.
    The class can be used either to run only the encoder (encode_batch()) to
    extract embeddings or to run a classification step (classify_batch()).
    ```
    Example
    -------
    >>> import torchaudio
    >>> from speechbrain.pretrained import EncoderClassifier
    >>> # Model is downloaded from the speechbrain HuggingFace repo
    >>> tmpdir = getfixture("tmpdir")
    >>> classifier = EncoderClassifier.from_hparams(
    ...     source="speechbrain/spkrec-ecapa-voxceleb",
    ...     savedir=tmpdir,
    ... )
    >>> # Compute embeddings
    >>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
    >>> embeddings =  classifier.encode_batch(signal)
    >>> # Classification
    >>> prediction =  classifier .classify_batch(signal)
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def encode_batch(self, audio, length=None):
        """Encodes the input audio into a single vector embedding.
        The waveforms should already be in the model's desired format.
        Arguments
        ---------
        audio : torch.tensor
            Batch of tokenized audio [batch, time, heads] 
        length : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.

        Returns
        -------
        torch.tensor
            The encoded batch
        """
        # Manage single waveforms in input
        embeddings = self.mods.discrete_embedding_layer(audio)
        att_w = self.mods.attention_mlp(embeddings)
        feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
        embeddings = self.mods.embedding_model(feats, length)
        return embeddings.squeeze(1)
    
    def encode_logits(self, logits, length=None):
        """Encodes the input audio logits into a single vector embedding.

        Arguments
        ---------
        audio : torch.tensor
            Batch of tokenized audio [batch, time, heads] 
        length : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.

        Returns
        -------
        torch.tensor
            The encoded batch
        """        
        embeddings = self.mods.discrete_embedding_layer.encode_logits(logits)
        att_w = self.mods.attention_mlp(embeddings)
        feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
        embeddings = self.mods.embedding_model(feats, length)
        return embeddings.squeeze(1)

    def forward(self, audio, length=None):
        """Encodes the input audio into a single vector embedding.
        The waveforms should already be in the model's desired format.
        Arguments
        ---------
        audio : torch.tensor
            Batch of tokenized audio [batch, time, heads] 
            or logits [batch, time, heads, tokens]
        length : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.

        Returns
        -------
        torch.tensor
            The encoded batch
        """        
        audio_dim = audio.dim()
        if audio_dim == 3:
            embeddings = self.encode_batch(audio, length)
        elif audio_dim == 4:
            embeddings = self.encode_logits(audio, length)
        else:
            raise ValueError("Unsupported audio shape {audio.shape}")
        return embeddings