Commit
·
74bcad4
1
Parent(s):
9d654a9
Added handler.py
Browse files- handler.py +47 -0
handler.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
from io import BytesIO
|
6 |
+
from transformers import BlipForConditionalGeneration, BlipProcessor
|
7 |
+
|
8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
+
|
10 |
+
class EndpointHandler():
|
11 |
+
def __init__(self, path=""):
|
12 |
+
# load the optimized model
|
13 |
+
|
14 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
15 |
+
self.model = BlipForConditionalGeneration.from_pretrained(
|
16 |
+
"Salesforce/blip-image-captioning-base"
|
17 |
+
).to(device)
|
18 |
+
self.model.eval()
|
19 |
+
self.model = self.model.to(device)
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
def __call__(self, data: Any) -> Dict[str, Any]:
|
24 |
+
"""
|
25 |
+
Args:
|
26 |
+
data (:obj:):
|
27 |
+
includes the input data and the parameters for the inference.
|
28 |
+
Return:
|
29 |
+
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
|
30 |
+
- "caption": A string corresponding to the generated caption.
|
31 |
+
"""
|
32 |
+
inputs = data.pop("inputs", data)
|
33 |
+
parameters = data.pop("parameters", {})
|
34 |
+
|
35 |
+
raw_images = [Image.open(BytesIO(_img)) for _img in inputs]
|
36 |
+
|
37 |
+
processed_image = self.processor(images=raw_images, return_tensors="pt")
|
38 |
+
processed_image["pixel_values"] = processed_image["pixel_values"].to(device)
|
39 |
+
processed_image = {**processed_image, **parameters}
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
out = self.model.generate(
|
43 |
+
**processed_image
|
44 |
+
)
|
45 |
+
captions = self.processor.batch_decode(out, skip_special_tokens=True)
|
46 |
+
# postprocess the prediction
|
47 |
+
return {"captions": captions}
|