flunardelli commited on
Commit
0985eef
·
verified ·
1 Parent(s): 834ed82

Upload llm_metaeval_eval_harness_mmlu.ipynb

Browse files
Files changed (1) hide show
  1. llm_metaeval_eval_harness_mmlu.ipynb +1373 -79
llm_metaeval_eval_harness_mmlu.ipynb CHANGED
@@ -13,9 +13,189 @@
13
  "cell_type": "code",
14
  "execution_count": null,
15
  "metadata": {
16
- "id": "kGW7vfRkrqHe"
 
 
 
 
17
  },
18
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  "source": [
20
  "!pip install -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt"
21
  ]
@@ -89,6 +269,7 @@
89
  "fewshot_split: dev\n",
90
  "fewshot_config:\n",
91
  " sampler: first_n\n",
 
92
  "output_type: multiple_choice\n",
93
  "doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
94
  "doc_to_choice: [\"A\", \"B\", \"C\", \"D\"]\n",
@@ -97,9 +278,6 @@
97
  " - metric: acc\n",
98
  " aggregation: mean\n",
99
  " higher_is_better: true\n",
100
- " - metric: acc_norm\n",
101
- " aggregation: mean\n",
102
- " higher_is_better: true\n",
103
  "\"\"\"\n",
104
  "create_task(YAML_mmlu_en_us_string, 'mmlu_en_us.yaml')\n",
105
  "os.environ['TASKS'] = 'mmlu_all'\n"
@@ -118,91 +296,181 @@
118
  "cell_type": "code",
119
  "execution_count": null,
120
  "metadata": {
121
- "colab": {
122
- "background_save": true
123
- },
124
  "id": "IzP5nyP0Gwk8"
125
  },
126
  "outputs": [],
127
  "source": [
128
- "!accelerate launch -m lm_eval \\\n",
129
- "--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,parallelize=True \\\n",
130
  "--tasks $TASKS \\\n",
131
- "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
132
- "--batch_size 16\n",
133
  "#--limit 10 \\"
134
  ]
135
  },
136
  {
137
  "cell_type": "code",
138
- "source": [
139
- "hf_upload_folder(BASE_FOLDER)"
140
- ],
141
  "metadata": {
142
- "id": "uMoitxJkHerH"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
  },
144
- "execution_count": null,
145
- "outputs": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  },
147
  {
148
  "cell_type": "code",
149
  "execution_count": null,
150
  "metadata": {
151
- "colab": {
152
- "background_save": true
153
- },
154
  "id": "oIACOAhDW5ow"
155
  },
156
  "outputs": [],
157
  "source": [
158
- "!accelerate launch -m lm_eval \\\n",
159
- "--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,parallelize=True \\\n",
160
  "--tasks $TASKS \\\n",
161
- "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
162
- "--batch_size 16\n",
163
  "#--limit 10 \\"
164
  ]
165
  },
166
  {
167
  "cell_type": "code",
168
- "source": [
169
- "hf_upload_folder(BASE_FOLDER)"
170
- ],
171
  "metadata": {
172
- "id": "eIUOqu5sHfkM"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
  },
174
- "execution_count": null,
175
- "outputs": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  },
177
  {
178
  "cell_type": "code",
179
  "execution_count": null,
180
  "metadata": {
181
- "colab": {
182
- "background_save": true
183
- },
184
  "id": "cFFYPzBIYGf7"
185
  },
186
  "outputs": [],
187
  "source": [
188
- "!accelerate launch -m lm_eval \\\n",
189
- "--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,parallelize=True \\\n",
190
  "--tasks $TASKS \\\n",
191
- "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
192
- "--batch_size 16\n",
193
  "#--limit 10 \\"
194
  ]
195
  },
196
  {
197
  "cell_type": "code",
198
- "source": [
199
- "hf_upload_folder(BASE_FOLDER)"
200
- ],
201
  "metadata": {
202
- "id": "xsL82Q4SHgMn"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  },
204
- "execution_count": null,
205
- "outputs": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206
  },
207
  {
208
  "cell_type": "markdown",
@@ -217,45 +485,28 @@
217
  "cell_type": "code",
218
  "execution_count": null,
219
  "metadata": {
 
 
220
  "colab": {
221
- "background_save": true
222
  },
223
- "id": "ilu9_ulWTy3p"
224
  },
225
- "outputs": [],
226
- "source": [
227
- "!accelerate launch -m lm_eval \\\n",
228
- "--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,parallelize=True \\\n",
229
- "--tasks $TASKS \\\n",
230
- "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
231
- "--batch_size 16\n",
232
- "#--limit 10 \\"
233
- ]
234
- },
235
- {
236
- "cell_type": "code",
237
- "source": [
238
- "hf_upload_folder(BASE_FOLDER)"
239
  ],
240
- "metadata": {
241
- "id": "jE5r8gVDHhAz"
242
- },
243
- "execution_count": null,
244
- "outputs": []
245
- },
246
- {
247
- "cell_type": "code",
248
- "execution_count": null,
249
- "metadata": {
250
- "id": "3cHI2qxN2fJ0"
251
- },
252
- "outputs": [],
253
  "source": [
254
- "!accelerate launch --multi_gpu --num_processes 4 -m lm_eval \\\n",
255
- "--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1 \\\n",
256
  "--tasks $TASKS \\\n",
257
- "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
258
- "--batch_size 8\n",
259
  "#--limit 10 \\"
260
  ]
261
  },
@@ -263,9 +514,22 @@
263
  "cell_type": "code",
264
  "execution_count": null,
265
  "metadata": {
266
- "id": "mGGdqBNBzFYL"
 
 
 
 
267
  },
268
- "outputs": [],
 
 
 
 
 
 
 
 
 
269
  "source": [
270
  "hf_upload_folder(BASE_FOLDER)"
271
  ]
@@ -284,6 +548,1036 @@
284
  },
285
  "language_info": {
286
  "name": "python"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287
  }
288
  },
289
  "nbformat": 4,
 
13
  "cell_type": "code",
14
  "execution_count": null,
15
  "metadata": {
16
+ "colab": {
17
+ "base_uri": "https://localhost:8080/"
18
+ },
19
+ "id": "kGW7vfRkrqHe",
20
+ "outputId": "a51e7052-6e2d-431e-a46b-63d92254c8cc"
21
  },
22
+ "outputs": [
23
+ {
24
+ "output_type": "stream",
25
+ "name": "stdout",
26
+ "text": [
27
+ "Collecting lm_eval@ git+https://github.com/EleutherAI/[email protected] (from -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
28
+ " Cloning https://github.com/EleutherAI/lm-evaluation-harness.git (to revision v0.4.6) to /tmp/pip-install-pwn3euso/lm-eval_15e9ff6cb88d46aa9b65c222332a3c3b\n",
29
+ " Running command git clone --filter=blob:none --quiet https://github.com/EleutherAI/lm-evaluation-harness.git /tmp/pip-install-pwn3euso/lm-eval_15e9ff6cb88d46aa9b65c222332a3c3b\n",
30
+ " Running command git checkout -q 9d36354e6422db94c374dc476c093b1495370983\n",
31
+ " Resolved https://github.com/EleutherAI/lm-evaluation-harness.git to commit 9d36354e6422db94c374dc476c093b1495370983\n",
32
+ " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
33
+ " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
34
+ " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
35
+ "Requirement already satisfied: accelerate==1.1.1 in /usr/local/lib/python3.10/dist-packages (from -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (1.1.1)\n",
36
+ "Collecting bitsandbytes==0.44.1 (from -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 2))\n",
37
+ " Downloading bitsandbytes-0.44.1-py3-none-manylinux_2_24_x86_64.whl.metadata (3.5 kB)\n",
38
+ "Requirement already satisfied: huggingface-hub>=0.21.0 in /usr/local/lib/python3.10/dist-packages (from accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (0.26.2)\n",
39
+ "Requirement already satisfied: numpy<3.0.0,>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (1.26.4)\n",
40
+ "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (24.2)\n",
41
+ "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (5.9.5)\n",
42
+ "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (6.0.2)\n",
43
+ "Requirement already satisfied: safetensors>=0.4.3 in /usr/local/lib/python3.10/dist-packages (from accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (0.4.5)\n",
44
+ "Requirement already satisfied: torch>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (2.5.1+cu121)\n",
45
+ "Collecting evaluate (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
46
+ " Downloading evaluate-0.4.3-py3-none-any.whl.metadata (9.2 kB)\n",
47
+ "Collecting datasets>=2.16.0 (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
48
+ " Downloading datasets-3.1.0-py3-none-any.whl.metadata (20 kB)\n",
49
+ "Collecting jsonlines (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
50
+ " Downloading jsonlines-4.0.0-py3-none-any.whl.metadata (1.6 kB)\n",
51
+ "Requirement already satisfied: numexpr in /usr/local/lib/python3.10/dist-packages (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2.10.1)\n",
52
+ "Requirement already satisfied: peft>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (0.13.2)\n",
53
+ "Collecting pybind11>=2.6.2 (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
54
+ " Downloading pybind11-2.13.6-py3-none-any.whl.metadata (9.5 kB)\n",
55
+ "Collecting pytablewriter (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
56
+ " Downloading pytablewriter-1.2.0-py3-none-any.whl.metadata (37 kB)\n",
57
+ "Collecting rouge-score>=0.0.4 (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
58
+ " Downloading rouge_score-0.1.2.tar.gz (17 kB)\n",
59
+ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
60
+ "Collecting sacrebleu>=1.5.0 (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
61
+ " Downloading sacrebleu-2.4.3-py3-none-any.whl.metadata (51 kB)\n",
62
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.8/51.8 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
63
+ "\u001b[?25hRequirement already satisfied: scikit-learn>=0.24.1 in /usr/local/lib/python3.10/dist-packages (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (1.5.2)\n",
64
+ "Collecting sqlitedict (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
65
+ " Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n",
66
+ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
67
+ "Collecting tqdm-multiprocess (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
68
+ " Downloading tqdm_multiprocess-0.0.11-py3-none-any.whl.metadata (5.7 kB)\n",
69
+ "Requirement already satisfied: transformers>=4.1 in /usr/local/lib/python3.10/dist-packages (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (4.46.2)\n",
70
+ "Collecting zstandard (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
71
+ " Downloading zstandard-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB)\n",
72
+ "Collecting dill (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
73
+ " Downloading dill-0.3.9-py3-none-any.whl.metadata (10 kB)\n",
74
+ "Collecting word2number (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
75
+ " Downloading word2number-1.1.zip (9.7 kB)\n",
76
+ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
77
+ "Requirement already satisfied: more_itertools in /usr/local/lib/python3.10/dist-packages (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (10.5.0)\n",
78
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (3.16.1)\n",
79
+ "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (17.0.0)\n",
80
+ "Collecting dill (from lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
81
+ " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
82
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2.2.2)\n",
83
+ "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2.32.3)\n",
84
+ "Requirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (4.66.6)\n",
85
+ "Collecting xxhash (from datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
86
+ " Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
87
+ "Collecting multiprocess<0.70.17 (from datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
88
+ " Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n",
89
+ "Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
90
+ " Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n",
91
+ "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (3.11.2)\n",
92
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.21.0->accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (4.12.2)\n",
93
+ "Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (1.4.0)\n",
94
+ "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (3.9.1)\n",
95
+ "Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (1.16.0)\n",
96
+ "Collecting portalocker (from sacrebleu>=1.5.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
97
+ " Downloading portalocker-3.0.0-py3-none-any.whl.metadata (8.5 kB)\n",
98
+ "Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2024.9.11)\n",
99
+ "Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (0.9.0)\n",
100
+ "Collecting colorama (from sacrebleu>=1.5.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
101
+ " Downloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)\n",
102
+ "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (5.3.0)\n",
103
+ "Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (1.13.1)\n",
104
+ "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (1.4.2)\n",
105
+ "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (3.5.0)\n",
106
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (3.4.2)\n",
107
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (3.1.4)\n",
108
+ "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (1.13.1)\n",
109
+ "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy==1.13.1->torch>=1.10.0->accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (1.3.0)\n",
110
+ "Requirement already satisfied: tokenizers<0.21,>=0.20 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.1->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (0.20.3)\n",
111
+ "Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonlines->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (24.2.0)\n",
112
+ "Requirement already satisfied: setuptools>=38.3.0 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (75.1.0)\n",
113
+ "Collecting DataProperty<2,>=1.0.1 (from pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
114
+ " Downloading DataProperty-1.0.1-py3-none-any.whl.metadata (11 kB)\n",
115
+ "Collecting mbstrdecoder<2,>=1.0.0 (from pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
116
+ " Downloading mbstrdecoder-1.1.3-py3-none-any.whl.metadata (4.0 kB)\n",
117
+ "Collecting pathvalidate<4,>=2.3.0 (from pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
118
+ " Downloading pathvalidate-3.2.1-py3-none-any.whl.metadata (12 kB)\n",
119
+ "Collecting tabledata<2,>=1.3.1 (from pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
120
+ " Downloading tabledata-1.3.3-py3-none-any.whl.metadata (3.7 kB)\n",
121
+ "Collecting tcolorpy<1,>=0.0.5 (from pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
122
+ " Downloading tcolorpy-0.1.6-py3-none-any.whl.metadata (6.4 kB)\n",
123
+ "Collecting typepy<2,>=1.3.2 (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3))\n",
124
+ " Downloading typepy-1.3.2-py3-none-any.whl.metadata (9.3 kB)\n",
125
+ "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2.4.3)\n",
126
+ "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (1.3.1)\n",
127
+ "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (1.5.0)\n",
128
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (6.1.0)\n",
129
+ "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (0.2.0)\n",
130
+ "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (1.17.2)\n",
131
+ "Requirement already satisfied: async-timeout<6.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (4.0.3)\n",
132
+ "Requirement already satisfied: chardet<6,>=3.0.4 in /usr/local/lib/python3.10/dist-packages (from mbstrdecoder<2,>=1.0.0->pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (5.2.0)\n",
133
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (3.4.0)\n",
134
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (3.10)\n",
135
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2.2.3)\n",
136
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2024.8.30)\n",
137
+ "Requirement already satisfied: python-dateutil<3.0.0,>=2.8.0 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2.8.2)\n",
138
+ "Requirement already satisfied: pytz>=2018.9 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2024.2)\n",
139
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.10.0->accelerate==1.1.1->-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 1)) (3.0.2)\n",
140
+ "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score>=0.0.4->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (8.1.7)\n",
141
+ "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->lm_eval@ git+https://github.com/EleutherAI/[email protected]>-r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt (line 3)) (2024.2)\n",
142
+ "Downloading bitsandbytes-0.44.1-py3-none-manylinux_2_24_x86_64.whl (122.4 MB)\n",
143
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m122.4/122.4 MB\u001b[0m \u001b[31m18.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
144
+ "\u001b[?25hDownloading datasets-3.1.0-py3-none-any.whl (480 kB)\n",
145
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m39.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
146
+ "\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
147
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
148
+ "\u001b[?25hDownloading evaluate-0.4.3-py3-none-any.whl (84 kB)\n",
149
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.0/84.0 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
150
+ "\u001b[?25hDownloading pybind11-2.13.6-py3-none-any.whl (243 kB)\n",
151
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m243.3/243.3 kB\u001b[0m \u001b[31m21.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
152
+ "\u001b[?25hDownloading sacrebleu-2.4.3-py3-none-any.whl (103 kB)\n",
153
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.0/104.0 kB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
154
+ "\u001b[?25hDownloading jsonlines-4.0.0-py3-none-any.whl (8.7 kB)\n",
155
+ "Downloading pytablewriter-1.2.0-py3-none-any.whl (111 kB)\n",
156
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.1/111.1 kB\u001b[0m \u001b[31m12.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
157
+ "\u001b[?25hDownloading tqdm_multiprocess-0.0.11-py3-none-any.whl (9.8 kB)\n",
158
+ "Downloading zstandard-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB)\n",
159
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m116.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
160
+ "\u001b[?25hDownloading DataProperty-1.0.1-py3-none-any.whl (27 kB)\n",
161
+ "Downloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n",
162
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m17.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
163
+ "\u001b[?25hDownloading mbstrdecoder-1.1.3-py3-none-any.whl (7.8 kB)\n",
164
+ "Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
165
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
166
+ "\u001b[?25hDownloading pathvalidate-3.2.1-py3-none-any.whl (23 kB)\n",
167
+ "Downloading tabledata-1.3.3-py3-none-any.whl (11 kB)\n",
168
+ "Downloading tcolorpy-0.1.6-py3-none-any.whl (8.1 kB)\n",
169
+ "Downloading typepy-1.3.2-py3-none-any.whl (31 kB)\n",
170
+ "Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
171
+ "Downloading portalocker-3.0.0-py3-none-any.whl (19 kB)\n",
172
+ "Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
173
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m18.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
174
+ "\u001b[?25hBuilding wheels for collected packages: lm_eval, rouge-score, sqlitedict, word2number\n",
175
+ " Building wheel for lm_eval (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
176
+ " Created wheel for lm_eval: filename=lm_eval-0.4.5-py3-none-any.whl size=2451555 sha256=eb0bd7b20cd5649e4d6ae45d6f8857dc7d4201219e5f1fb7f05857d0ce40dafd\n",
177
+ " Stored in directory: /tmp/pip-ephem-wheel-cache-j3ph5vqa/wheels/c0/f5/fd/b1db03e4fd2a4661835862d036a87a42bf868abe99903e333d\n",
178
+ " Building wheel for rouge-score (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
179
+ " Created wheel for rouge-score: filename=rouge_score-0.1.2-py3-none-any.whl size=24935 sha256=4de791eeae05926c2d1b4219891a96ab45504e46c483cd51a238bca08943b392\n",
180
+ " Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n",
181
+ " Building wheel for sqlitedict (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
182
+ " Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16864 sha256=18e74dd174299b493b0bd17c4980b9f5a6c3d25b1534eb5ed9aee6508528b32c\n",
183
+ " Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n",
184
+ " Building wheel for word2number (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
185
+ " Created wheel for word2number: filename=word2number-1.1-py3-none-any.whl size=5568 sha256=3bff6053337559ad74336e3aa7d882744e338bd917ee99abc64e06dd30c22e8f\n",
186
+ " Stored in directory: /root/.cache/pip/wheels/84/ff/26/d3cfbd971e96c5aa3737ecfced81628830d7359b55fbb8ca3b\n",
187
+ "Successfully built lm_eval rouge-score sqlitedict word2number\n",
188
+ "Installing collected packages: word2number, sqlitedict, zstandard, xxhash, tcolorpy, pybind11, portalocker, pathvalidate, mbstrdecoder, jsonlines, fsspec, dill, colorama, typepy, tqdm-multiprocess, sacrebleu, rouge-score, multiprocess, bitsandbytes, DataProperty, tabledata, datasets, pytablewriter, evaluate, lm_eval\n",
189
+ " Attempting uninstall: fsspec\n",
190
+ " Found existing installation: fsspec 2024.10.0\n",
191
+ " Uninstalling fsspec-2024.10.0:\n",
192
+ " Successfully uninstalled fsspec-2024.10.0\n",
193
+ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
194
+ "gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n",
195
+ "\u001b[0mSuccessfully installed DataProperty-1.0.1 bitsandbytes-0.44.1 colorama-0.4.6 datasets-3.1.0 dill-0.3.8 evaluate-0.4.3 fsspec-2024.9.0 jsonlines-4.0.0 lm_eval-0.4.5 mbstrdecoder-1.1.3 multiprocess-0.70.16 pathvalidate-3.2.1 portalocker-3.0.0 pybind11-2.13.6 pytablewriter-1.2.0 rouge-score-0.1.2 sacrebleu-2.4.3 sqlitedict-2.1.0 tabledata-1.3.3 tcolorpy-0.1.6 tqdm-multiprocess-0.0.11 typepy-1.3.2 word2number-1.1 xxhash-3.5.0 zstandard-0.23.0\n"
196
+ ]
197
+ }
198
+ ],
199
  "source": [
200
  "!pip install -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt"
201
  ]
 
269
  "fewshot_split: dev\n",
270
  "fewshot_config:\n",
271
  " sampler: first_n\n",
272
+ "num_fewshot: 5\n",
273
  "output_type: multiple_choice\n",
274
  "doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
275
  "doc_to_choice: [\"A\", \"B\", \"C\", \"D\"]\n",
 
278
  " - metric: acc\n",
279
  " aggregation: mean\n",
280
  " higher_is_better: true\n",
 
 
 
281
  "\"\"\"\n",
282
  "create_task(YAML_mmlu_en_us_string, 'mmlu_en_us.yaml')\n",
283
  "os.environ['TASKS'] = 'mmlu_all'\n"
 
296
  "cell_type": "code",
297
  "execution_count": null,
298
  "metadata": {
 
 
 
299
  "id": "IzP5nyP0Gwk8"
300
  },
301
  "outputs": [],
302
  "source": [
303
+ "!lm_eval \\\n",
304
+ "--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,revision=d0a2081ed47e20ce524e8bc5d132f3fad2f69ff0,trust_remote_code=False,dtype=bfloat16,parallelize=True \\\n",
305
  "--tasks $TASKS \\\n",
306
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --log_samples \\\n",
307
+ "--batch_size auto &> run.log\n",
308
  "#--limit 10 \\"
309
  ]
310
  },
311
  {
312
  "cell_type": "code",
313
+ "execution_count": null,
 
 
314
  "metadata": {
315
+ "id": "uMoitxJkHerH",
316
+ "colab": {
317
+ "base_uri": "https://localhost:8080/",
318
+ "height": 77,
319
+ "referenced_widgets": [
320
+ "7b825d3c10be4fa6abd7c115f8e4e1f2",
321
+ "d426e85f0ce641d381d52927df68c278",
322
+ "8f30879a15de4244adea101f6dc05c35",
323
+ "96507b4059764b0493bbb286f4cd1c3a",
324
+ "21cc893be48e460ab6e83e0f685249c2",
325
+ "047db71ca65846f1bacf16fbcd9c40f8",
326
+ "3813240ddf704b91ac556c05fe7499f7",
327
+ "46f47846e9cd4b9b9cf321247fe0e518",
328
+ "922f354c9c5b4c9ebae6ad0e1c87b760",
329
+ "c1bdaff966f84b949b22b650311b6528",
330
+ "f16a675994434ddb8b5983faf193b381"
331
+ ]
332
+ },
333
+ "outputId": "b833672c-b855-494d-f480-8417ef199be8"
334
  },
335
+ "outputs": [
336
+ {
337
+ "output_type": "display_data",
338
+ "data": {
339
+ "text/plain": [
340
+ "samples_mmlu_all_2024-12-05T10-07-32.229420.jsonl: 0%| | 0.00/89.9M [00:00<?, ?B/s]"
341
+ ],
342
+ "application/vnd.jupyter.widget-view+json": {
343
+ "version_major": 2,
344
+ "version_minor": 0,
345
+ "model_id": "7b825d3c10be4fa6abd7c115f8e4e1f2"
346
+ }
347
+ },
348
+ "metadata": {}
349
+ }
350
+ ],
351
+ "source": [
352
+ "hf_upload_folder(BASE_FOLDER)"
353
+ ]
354
  },
355
  {
356
  "cell_type": "code",
357
  "execution_count": null,
358
  "metadata": {
 
 
 
359
  "id": "oIACOAhDW5ow"
360
  },
361
  "outputs": [],
362
  "source": [
363
+ "!lm_eval \\\n",
364
+ "--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,revision=392a143b624368100f77a3eafaa4a2468ba50a72,trust_remote_code=False,dtype=bfloat16,parallelize=True \\\n",
365
  "--tasks $TASKS \\\n",
366
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --log_samples \\\n",
367
+ "--batch_size auto &> run.log\n",
368
  "#--limit 10 \\"
369
  ]
370
  },
371
  {
372
  "cell_type": "code",
373
+ "execution_count": null,
 
 
374
  "metadata": {
375
+ "id": "eIUOqu5sHfkM",
376
+ "colab": {
377
+ "base_uri": "https://localhost:8080/",
378
+ "height": 77,
379
+ "referenced_widgets": [
380
+ "79e90f6090ee493890acbf26292dd997",
381
+ "d245bcee114a4216bbfc6a1999daca08",
382
+ "e2acb9e61cec4083b3113415a205df12",
383
+ "08a63fea880840a2a472008d98bb03d2",
384
+ "004d4e339ec840c8bb748f4fdcef663a",
385
+ "3f9668c6708247f4b65ae9204b5df832",
386
+ "b1189ac61af44228a2e52026e73b0d2e",
387
+ "8c89d406ae534cf0a7ef99eba4263b2b",
388
+ "8adaf7159dcf4b318c2fc5930dd8633d",
389
+ "24bd51fe6e81460f9a9c99a1961a4107",
390
+ "2b0ffc94bfca468a89f0799cbef29ee5"
391
+ ]
392
+ },
393
+ "outputId": "50a091b8-93f4-48dd-93ec-6839b33fbd7e"
394
  },
395
+ "outputs": [
396
+ {
397
+ "output_type": "display_data",
398
+ "data": {
399
+ "text/plain": [
400
+ "samples_mmlu_all_2024-12-05T10-28-27.223863.jsonl: 0%| | 0.00/89.9M [00:00<?, ?B/s]"
401
+ ],
402
+ "application/vnd.jupyter.widget-view+json": {
403
+ "version_major": 2,
404
+ "version_minor": 0,
405
+ "model_id": "79e90f6090ee493890acbf26292dd997"
406
+ }
407
+ },
408
+ "metadata": {}
409
+ }
410
+ ],
411
+ "source": [
412
+ "hf_upload_folder(BASE_FOLDER)"
413
+ ]
414
  },
415
  {
416
  "cell_type": "code",
417
  "execution_count": null,
418
  "metadata": {
 
 
 
419
  "id": "cFFYPzBIYGf7"
420
  },
421
  "outputs": [],
422
  "source": [
423
+ "!lm_eval \\\n",
424
+ "--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,revision=62bd457b6fe961a42a631306577e622c83876cb6,trust_remote_code=False,dtype=bfloat16,parallelize=True \\\n",
425
  "--tasks $TASKS \\\n",
426
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --log_samples \\\n",
427
+ "--batch_size auto &> run.log\n",
428
  "#--limit 10 \\"
429
  ]
430
  },
431
  {
432
  "cell_type": "code",
433
+ "execution_count": null,
 
 
434
  "metadata": {
435
+ "id": "xsL82Q4SHgMn",
436
+ "colab": {
437
+ "base_uri": "https://localhost:8080/",
438
+ "height": 77,
439
+ "referenced_widgets": [
440
+ "c2b881fabd4f4758bd9aca516a579b4c",
441
+ "6ab81736ee0643c7ae5e20978914fef4",
442
+ "84ee9c147755422fb74229a2817ad35a",
443
+ "35025439e8e545d28ee9f3c51df4f1bb",
444
+ "da989b5fe95449f6928355cd317d7f4a",
445
+ "ed8214d39c2e4e47a7b32e1152597642",
446
+ "6210d27773144f78aed58c4ad9aaa0a2",
447
+ "0e65b64cc85c4b52aa48c11f65ccceeb",
448
+ "85504ad2f7be45e1a828b5077905dad5",
449
+ "a638974916d74c239e287002bc1d089a",
450
+ "a6fcb58400a54716bda1e4dc511add95"
451
+ ]
452
+ },
453
+ "outputId": "29244830-d996-40bf-9f1f-77536ffe10f7"
454
  },
455
+ "outputs": [
456
+ {
457
+ "output_type": "display_data",
458
+ "data": {
459
+ "text/plain": [
460
+ "samples_mmlu_all_2024-12-05T11-08-04.943164.jsonl: 0%| | 0.00/89.9M [00:00<?, ?B/s]"
461
+ ],
462
+ "application/vnd.jupyter.widget-view+json": {
463
+ "version_major": 2,
464
+ "version_minor": 0,
465
+ "model_id": "c2b881fabd4f4758bd9aca516a579b4c"
466
+ }
467
+ },
468
+ "metadata": {}
469
+ }
470
+ ],
471
+ "source": [
472
+ "hf_upload_folder(BASE_FOLDER)"
473
+ ]
474
  },
475
  {
476
  "cell_type": "markdown",
 
485
  "cell_type": "code",
486
  "execution_count": null,
487
  "metadata": {
488
+ "collapsed": true,
489
+ "id": "ilu9_ulWTy3p",
490
  "colab": {
491
+ "base_uri": "https://localhost:8080/"
492
  },
493
+ "outputId": "b87c2a88-022e-40c5-861b-90c51b8affbe"
494
  },
495
+ "outputs": [
496
+ {
497
+ "output_type": "stream",
498
+ "name": "stdout",
499
+ "text": [
500
+ "^C\n"
501
+ ]
502
+ }
 
 
 
 
 
 
503
  ],
 
 
 
 
 
 
 
 
 
 
 
 
 
504
  "source": [
505
+ "!lm_eval \\\n",
506
+ "--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,revision=41bd4c9e7e4fb318ca40e721131d4933966c2cc1,trust_remote_code=False,dtype=bfloat16,parallelize=True \\\n",
507
  "--tasks $TASKS \\\n",
508
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --log_samples \\\n",
509
+ "--batch_size auto &> run.log\n",
510
  "#--limit 10 \\"
511
  ]
512
  },
 
514
  "cell_type": "code",
515
  "execution_count": null,
516
  "metadata": {
517
+ "id": "jE5r8gVDHhAz",
518
+ "colab": {
519
+ "base_uri": "https://localhost:8080/"
520
+ },
521
+ "outputId": "23da6a08-c279-4d2c-96b1-d2d849c77d3d"
522
  },
523
+ "outputs": [
524
+ {
525
+ "output_type": "stream",
526
+ "name": "stderr",
527
+ "text": [
528
+ "No files have been modified since last commit. Skipping to prevent empty commit.\n",
529
+ "WARNING:huggingface_hub.hf_api:No files have been modified since last commit. Skipping to prevent empty commit.\n"
530
+ ]
531
+ }
532
+ ],
533
  "source": [
534
  "hf_upload_folder(BASE_FOLDER)"
535
  ]
 
548
  },
549
  "language_info": {
550
  "name": "python"
551
+ },
552
+ "widgets": {
553
+ "application/vnd.jupyter.widget-state+json": {
554
+ "7b825d3c10be4fa6abd7c115f8e4e1f2": {
555
+ "model_module": "@jupyter-widgets/controls",
556
+ "model_name": "HBoxModel",
557
+ "model_module_version": "1.5.0",
558
+ "state": {
559
+ "_dom_classes": [],
560
+ "_model_module": "@jupyter-widgets/controls",
561
+ "_model_module_version": "1.5.0",
562
+ "_model_name": "HBoxModel",
563
+ "_view_count": null,
564
+ "_view_module": "@jupyter-widgets/controls",
565
+ "_view_module_version": "1.5.0",
566
+ "_view_name": "HBoxView",
567
+ "box_style": "",
568
+ "children": [
569
+ "IPY_MODEL_d426e85f0ce641d381d52927df68c278",
570
+ "IPY_MODEL_8f30879a15de4244adea101f6dc05c35",
571
+ "IPY_MODEL_96507b4059764b0493bbb286f4cd1c3a"
572
+ ],
573
+ "layout": "IPY_MODEL_21cc893be48e460ab6e83e0f685249c2"
574
+ }
575
+ },
576
+ "d426e85f0ce641d381d52927df68c278": {
577
+ "model_module": "@jupyter-widgets/controls",
578
+ "model_name": "HTMLModel",
579
+ "model_module_version": "1.5.0",
580
+ "state": {
581
+ "_dom_classes": [],
582
+ "_model_module": "@jupyter-widgets/controls",
583
+ "_model_module_version": "1.5.0",
584
+ "_model_name": "HTMLModel",
585
+ "_view_count": null,
586
+ "_view_module": "@jupyter-widgets/controls",
587
+ "_view_module_version": "1.5.0",
588
+ "_view_name": "HTMLView",
589
+ "description": "",
590
+ "description_tooltip": null,
591
+ "layout": "IPY_MODEL_047db71ca65846f1bacf16fbcd9c40f8",
592
+ "placeholder": "​",
593
+ "style": "IPY_MODEL_3813240ddf704b91ac556c05fe7499f7",
594
+ "value": "samples_mmlu_all_2024-12-05T10-07-32.229420.jsonl: 100%"
595
+ }
596
+ },
597
+ "8f30879a15de4244adea101f6dc05c35": {
598
+ "model_module": "@jupyter-widgets/controls",
599
+ "model_name": "FloatProgressModel",
600
+ "model_module_version": "1.5.0",
601
+ "state": {
602
+ "_dom_classes": [],
603
+ "_model_module": "@jupyter-widgets/controls",
604
+ "_model_module_version": "1.5.0",
605
+ "_model_name": "FloatProgressModel",
606
+ "_view_count": null,
607
+ "_view_module": "@jupyter-widgets/controls",
608
+ "_view_module_version": "1.5.0",
609
+ "_view_name": "ProgressView",
610
+ "bar_style": "success",
611
+ "description": "",
612
+ "description_tooltip": null,
613
+ "layout": "IPY_MODEL_46f47846e9cd4b9b9cf321247fe0e518",
614
+ "max": 89903482,
615
+ "min": 0,
616
+ "orientation": "horizontal",
617
+ "style": "IPY_MODEL_922f354c9c5b4c9ebae6ad0e1c87b760",
618
+ "value": 89903482
619
+ }
620
+ },
621
+ "96507b4059764b0493bbb286f4cd1c3a": {
622
+ "model_module": "@jupyter-widgets/controls",
623
+ "model_name": "HTMLModel",
624
+ "model_module_version": "1.5.0",
625
+ "state": {
626
+ "_dom_classes": [],
627
+ "_model_module": "@jupyter-widgets/controls",
628
+ "_model_module_version": "1.5.0",
629
+ "_model_name": "HTMLModel",
630
+ "_view_count": null,
631
+ "_view_module": "@jupyter-widgets/controls",
632
+ "_view_module_version": "1.5.0",
633
+ "_view_name": "HTMLView",
634
+ "description": "",
635
+ "description_tooltip": null,
636
+ "layout": "IPY_MODEL_c1bdaff966f84b949b22b650311b6528",
637
+ "placeholder": "​",
638
+ "style": "IPY_MODEL_f16a675994434ddb8b5983faf193b381",
639
+ "value": " 89.9M/89.9M [00:03&lt;00:00, 25.2MB/s]"
640
+ }
641
+ },
642
+ "21cc893be48e460ab6e83e0f685249c2": {
643
+ "model_module": "@jupyter-widgets/base",
644
+ "model_name": "LayoutModel",
645
+ "model_module_version": "1.2.0",
646
+ "state": {
647
+ "_model_module": "@jupyter-widgets/base",
648
+ "_model_module_version": "1.2.0",
649
+ "_model_name": "LayoutModel",
650
+ "_view_count": null,
651
+ "_view_module": "@jupyter-widgets/base",
652
+ "_view_module_version": "1.2.0",
653
+ "_view_name": "LayoutView",
654
+ "align_content": null,
655
+ "align_items": null,
656
+ "align_self": null,
657
+ "border": null,
658
+ "bottom": null,
659
+ "display": null,
660
+ "flex": null,
661
+ "flex_flow": null,
662
+ "grid_area": null,
663
+ "grid_auto_columns": null,
664
+ "grid_auto_flow": null,
665
+ "grid_auto_rows": null,
666
+ "grid_column": null,
667
+ "grid_gap": null,
668
+ "grid_row": null,
669
+ "grid_template_areas": null,
670
+ "grid_template_columns": null,
671
+ "grid_template_rows": null,
672
+ "height": null,
673
+ "justify_content": null,
674
+ "justify_items": null,
675
+ "left": null,
676
+ "margin": null,
677
+ "max_height": null,
678
+ "max_width": null,
679
+ "min_height": null,
680
+ "min_width": null,
681
+ "object_fit": null,
682
+ "object_position": null,
683
+ "order": null,
684
+ "overflow": null,
685
+ "overflow_x": null,
686
+ "overflow_y": null,
687
+ "padding": null,
688
+ "right": null,
689
+ "top": null,
690
+ "visibility": null,
691
+ "width": null
692
+ }
693
+ },
694
+ "047db71ca65846f1bacf16fbcd9c40f8": {
695
+ "model_module": "@jupyter-widgets/base",
696
+ "model_name": "LayoutModel",
697
+ "model_module_version": "1.2.0",
698
+ "state": {
699
+ "_model_module": "@jupyter-widgets/base",
700
+ "_model_module_version": "1.2.0",
701
+ "_model_name": "LayoutModel",
702
+ "_view_count": null,
703
+ "_view_module": "@jupyter-widgets/base",
704
+ "_view_module_version": "1.2.0",
705
+ "_view_name": "LayoutView",
706
+ "align_content": null,
707
+ "align_items": null,
708
+ "align_self": null,
709
+ "border": null,
710
+ "bottom": null,
711
+ "display": null,
712
+ "flex": null,
713
+ "flex_flow": null,
714
+ "grid_area": null,
715
+ "grid_auto_columns": null,
716
+ "grid_auto_flow": null,
717
+ "grid_auto_rows": null,
718
+ "grid_column": null,
719
+ "grid_gap": null,
720
+ "grid_row": null,
721
+ "grid_template_areas": null,
722
+ "grid_template_columns": null,
723
+ "grid_template_rows": null,
724
+ "height": null,
725
+ "justify_content": null,
726
+ "justify_items": null,
727
+ "left": null,
728
+ "margin": null,
729
+ "max_height": null,
730
+ "max_width": null,
731
+ "min_height": null,
732
+ "min_width": null,
733
+ "object_fit": null,
734
+ "object_position": null,
735
+ "order": null,
736
+ "overflow": null,
737
+ "overflow_x": null,
738
+ "overflow_y": null,
739
+ "padding": null,
740
+ "right": null,
741
+ "top": null,
742
+ "visibility": null,
743
+ "width": null
744
+ }
745
+ },
746
+ "3813240ddf704b91ac556c05fe7499f7": {
747
+ "model_module": "@jupyter-widgets/controls",
748
+ "model_name": "DescriptionStyleModel",
749
+ "model_module_version": "1.5.0",
750
+ "state": {
751
+ "_model_module": "@jupyter-widgets/controls",
752
+ "_model_module_version": "1.5.0",
753
+ "_model_name": "DescriptionStyleModel",
754
+ "_view_count": null,
755
+ "_view_module": "@jupyter-widgets/base",
756
+ "_view_module_version": "1.2.0",
757
+ "_view_name": "StyleView",
758
+ "description_width": ""
759
+ }
760
+ },
761
+ "46f47846e9cd4b9b9cf321247fe0e518": {
762
+ "model_module": "@jupyter-widgets/base",
763
+ "model_name": "LayoutModel",
764
+ "model_module_version": "1.2.0",
765
+ "state": {
766
+ "_model_module": "@jupyter-widgets/base",
767
+ "_model_module_version": "1.2.0",
768
+ "_model_name": "LayoutModel",
769
+ "_view_count": null,
770
+ "_view_module": "@jupyter-widgets/base",
771
+ "_view_module_version": "1.2.0",
772
+ "_view_name": "LayoutView",
773
+ "align_content": null,
774
+ "align_items": null,
775
+ "align_self": null,
776
+ "border": null,
777
+ "bottom": null,
778
+ "display": null,
779
+ "flex": null,
780
+ "flex_flow": null,
781
+ "grid_area": null,
782
+ "grid_auto_columns": null,
783
+ "grid_auto_flow": null,
784
+ "grid_auto_rows": null,
785
+ "grid_column": null,
786
+ "grid_gap": null,
787
+ "grid_row": null,
788
+ "grid_template_areas": null,
789
+ "grid_template_columns": null,
790
+ "grid_template_rows": null,
791
+ "height": null,
792
+ "justify_content": null,
793
+ "justify_items": null,
794
+ "left": null,
795
+ "margin": null,
796
+ "max_height": null,
797
+ "max_width": null,
798
+ "min_height": null,
799
+ "min_width": null,
800
+ "object_fit": null,
801
+ "object_position": null,
802
+ "order": null,
803
+ "overflow": null,
804
+ "overflow_x": null,
805
+ "overflow_y": null,
806
+ "padding": null,
807
+ "right": null,
808
+ "top": null,
809
+ "visibility": null,
810
+ "width": null
811
+ }
812
+ },
813
+ "922f354c9c5b4c9ebae6ad0e1c87b760": {
814
+ "model_module": "@jupyter-widgets/controls",
815
+ "model_name": "ProgressStyleModel",
816
+ "model_module_version": "1.5.0",
817
+ "state": {
818
+ "_model_module": "@jupyter-widgets/controls",
819
+ "_model_module_version": "1.5.0",
820
+ "_model_name": "ProgressStyleModel",
821
+ "_view_count": null,
822
+ "_view_module": "@jupyter-widgets/base",
823
+ "_view_module_version": "1.2.0",
824
+ "_view_name": "StyleView",
825
+ "bar_color": null,
826
+ "description_width": ""
827
+ }
828
+ },
829
+ "c1bdaff966f84b949b22b650311b6528": {
830
+ "model_module": "@jupyter-widgets/base",
831
+ "model_name": "LayoutModel",
832
+ "model_module_version": "1.2.0",
833
+ "state": {
834
+ "_model_module": "@jupyter-widgets/base",
835
+ "_model_module_version": "1.2.0",
836
+ "_model_name": "LayoutModel",
837
+ "_view_count": null,
838
+ "_view_module": "@jupyter-widgets/base",
839
+ "_view_module_version": "1.2.0",
840
+ "_view_name": "LayoutView",
841
+ "align_content": null,
842
+ "align_items": null,
843
+ "align_self": null,
844
+ "border": null,
845
+ "bottom": null,
846
+ "display": null,
847
+ "flex": null,
848
+ "flex_flow": null,
849
+ "grid_area": null,
850
+ "grid_auto_columns": null,
851
+ "grid_auto_flow": null,
852
+ "grid_auto_rows": null,
853
+ "grid_column": null,
854
+ "grid_gap": null,
855
+ "grid_row": null,
856
+ "grid_template_areas": null,
857
+ "grid_template_columns": null,
858
+ "grid_template_rows": null,
859
+ "height": null,
860
+ "justify_content": null,
861
+ "justify_items": null,
862
+ "left": null,
863
+ "margin": null,
864
+ "max_height": null,
865
+ "max_width": null,
866
+ "min_height": null,
867
+ "min_width": null,
868
+ "object_fit": null,
869
+ "object_position": null,
870
+ "order": null,
871
+ "overflow": null,
872
+ "overflow_x": null,
873
+ "overflow_y": null,
874
+ "padding": null,
875
+ "right": null,
876
+ "top": null,
877
+ "visibility": null,
878
+ "width": null
879
+ }
880
+ },
881
+ "f16a675994434ddb8b5983faf193b381": {
882
+ "model_module": "@jupyter-widgets/controls",
883
+ "model_name": "DescriptionStyleModel",
884
+ "model_module_version": "1.5.0",
885
+ "state": {
886
+ "_model_module": "@jupyter-widgets/controls",
887
+ "_model_module_version": "1.5.0",
888
+ "_model_name": "DescriptionStyleModel",
889
+ "_view_count": null,
890
+ "_view_module": "@jupyter-widgets/base",
891
+ "_view_module_version": "1.2.0",
892
+ "_view_name": "StyleView",
893
+ "description_width": ""
894
+ }
895
+ },
896
+ "79e90f6090ee493890acbf26292dd997": {
897
+ "model_module": "@jupyter-widgets/controls",
898
+ "model_name": "HBoxModel",
899
+ "model_module_version": "1.5.0",
900
+ "state": {
901
+ "_dom_classes": [],
902
+ "_model_module": "@jupyter-widgets/controls",
903
+ "_model_module_version": "1.5.0",
904
+ "_model_name": "HBoxModel",
905
+ "_view_count": null,
906
+ "_view_module": "@jupyter-widgets/controls",
907
+ "_view_module_version": "1.5.0",
908
+ "_view_name": "HBoxView",
909
+ "box_style": "",
910
+ "children": [
911
+ "IPY_MODEL_d245bcee114a4216bbfc6a1999daca08",
912
+ "IPY_MODEL_e2acb9e61cec4083b3113415a205df12",
913
+ "IPY_MODEL_08a63fea880840a2a472008d98bb03d2"
914
+ ],
915
+ "layout": "IPY_MODEL_004d4e339ec840c8bb748f4fdcef663a"
916
+ }
917
+ },
918
+ "d245bcee114a4216bbfc6a1999daca08": {
919
+ "model_module": "@jupyter-widgets/controls",
920
+ "model_name": "HTMLModel",
921
+ "model_module_version": "1.5.0",
922
+ "state": {
923
+ "_dom_classes": [],
924
+ "_model_module": "@jupyter-widgets/controls",
925
+ "_model_module_version": "1.5.0",
926
+ "_model_name": "HTMLModel",
927
+ "_view_count": null,
928
+ "_view_module": "@jupyter-widgets/controls",
929
+ "_view_module_version": "1.5.0",
930
+ "_view_name": "HTMLView",
931
+ "description": "",
932
+ "description_tooltip": null,
933
+ "layout": "IPY_MODEL_3f9668c6708247f4b65ae9204b5df832",
934
+ "placeholder": "​",
935
+ "style": "IPY_MODEL_b1189ac61af44228a2e52026e73b0d2e",
936
+ "value": "samples_mmlu_all_2024-12-05T10-28-27.223863.jsonl: 100%"
937
+ }
938
+ },
939
+ "e2acb9e61cec4083b3113415a205df12": {
940
+ "model_module": "@jupyter-widgets/controls",
941
+ "model_name": "FloatProgressModel",
942
+ "model_module_version": "1.5.0",
943
+ "state": {
944
+ "_dom_classes": [],
945
+ "_model_module": "@jupyter-widgets/controls",
946
+ "_model_module_version": "1.5.0",
947
+ "_model_name": "FloatProgressModel",
948
+ "_view_count": null,
949
+ "_view_module": "@jupyter-widgets/controls",
950
+ "_view_module_version": "1.5.0",
951
+ "_view_name": "ProgressView",
952
+ "bar_style": "success",
953
+ "description": "",
954
+ "description_tooltip": null,
955
+ "layout": "IPY_MODEL_8c89d406ae534cf0a7ef99eba4263b2b",
956
+ "max": 89904912,
957
+ "min": 0,
958
+ "orientation": "horizontal",
959
+ "style": "IPY_MODEL_8adaf7159dcf4b318c2fc5930dd8633d",
960
+ "value": 89904912
961
+ }
962
+ },
963
+ "08a63fea880840a2a472008d98bb03d2": {
964
+ "model_module": "@jupyter-widgets/controls",
965
+ "model_name": "HTMLModel",
966
+ "model_module_version": "1.5.0",
967
+ "state": {
968
+ "_dom_classes": [],
969
+ "_model_module": "@jupyter-widgets/controls",
970
+ "_model_module_version": "1.5.0",
971
+ "_model_name": "HTMLModel",
972
+ "_view_count": null,
973
+ "_view_module": "@jupyter-widgets/controls",
974
+ "_view_module_version": "1.5.0",
975
+ "_view_name": "HTMLView",
976
+ "description": "",
977
+ "description_tooltip": null,
978
+ "layout": "IPY_MODEL_24bd51fe6e81460f9a9c99a1961a4107",
979
+ "placeholder": "​",
980
+ "style": "IPY_MODEL_2b0ffc94bfca468a89f0799cbef29ee5",
981
+ "value": " 89.9M/89.9M [00:04&lt;00:00, 17.7MB/s]"
982
+ }
983
+ },
984
+ "004d4e339ec840c8bb748f4fdcef663a": {
985
+ "model_module": "@jupyter-widgets/base",
986
+ "model_name": "LayoutModel",
987
+ "model_module_version": "1.2.0",
988
+ "state": {
989
+ "_model_module": "@jupyter-widgets/base",
990
+ "_model_module_version": "1.2.0",
991
+ "_model_name": "LayoutModel",
992
+ "_view_count": null,
993
+ "_view_module": "@jupyter-widgets/base",
994
+ "_view_module_version": "1.2.0",
995
+ "_view_name": "LayoutView",
996
+ "align_content": null,
997
+ "align_items": null,
998
+ "align_self": null,
999
+ "border": null,
1000
+ "bottom": null,
1001
+ "display": null,
1002
+ "flex": null,
1003
+ "flex_flow": null,
1004
+ "grid_area": null,
1005
+ "grid_auto_columns": null,
1006
+ "grid_auto_flow": null,
1007
+ "grid_auto_rows": null,
1008
+ "grid_column": null,
1009
+ "grid_gap": null,
1010
+ "grid_row": null,
1011
+ "grid_template_areas": null,
1012
+ "grid_template_columns": null,
1013
+ "grid_template_rows": null,
1014
+ "height": null,
1015
+ "justify_content": null,
1016
+ "justify_items": null,
1017
+ "left": null,
1018
+ "margin": null,
1019
+ "max_height": null,
1020
+ "max_width": null,
1021
+ "min_height": null,
1022
+ "min_width": null,
1023
+ "object_fit": null,
1024
+ "object_position": null,
1025
+ "order": null,
1026
+ "overflow": null,
1027
+ "overflow_x": null,
1028
+ "overflow_y": null,
1029
+ "padding": null,
1030
+ "right": null,
1031
+ "top": null,
1032
+ "visibility": null,
1033
+ "width": null
1034
+ }
1035
+ },
1036
+ "3f9668c6708247f4b65ae9204b5df832": {
1037
+ "model_module": "@jupyter-widgets/base",
1038
+ "model_name": "LayoutModel",
1039
+ "model_module_version": "1.2.0",
1040
+ "state": {
1041
+ "_model_module": "@jupyter-widgets/base",
1042
+ "_model_module_version": "1.2.0",
1043
+ "_model_name": "LayoutModel",
1044
+ "_view_count": null,
1045
+ "_view_module": "@jupyter-widgets/base",
1046
+ "_view_module_version": "1.2.0",
1047
+ "_view_name": "LayoutView",
1048
+ "align_content": null,
1049
+ "align_items": null,
1050
+ "align_self": null,
1051
+ "border": null,
1052
+ "bottom": null,
1053
+ "display": null,
1054
+ "flex": null,
1055
+ "flex_flow": null,
1056
+ "grid_area": null,
1057
+ "grid_auto_columns": null,
1058
+ "grid_auto_flow": null,
1059
+ "grid_auto_rows": null,
1060
+ "grid_column": null,
1061
+ "grid_gap": null,
1062
+ "grid_row": null,
1063
+ "grid_template_areas": null,
1064
+ "grid_template_columns": null,
1065
+ "grid_template_rows": null,
1066
+ "height": null,
1067
+ "justify_content": null,
1068
+ "justify_items": null,
1069
+ "left": null,
1070
+ "margin": null,
1071
+ "max_height": null,
1072
+ "max_width": null,
1073
+ "min_height": null,
1074
+ "min_width": null,
1075
+ "object_fit": null,
1076
+ "object_position": null,
1077
+ "order": null,
1078
+ "overflow": null,
1079
+ "overflow_x": null,
1080
+ "overflow_y": null,
1081
+ "padding": null,
1082
+ "right": null,
1083
+ "top": null,
1084
+ "visibility": null,
1085
+ "width": null
1086
+ }
1087
+ },
1088
+ "b1189ac61af44228a2e52026e73b0d2e": {
1089
+ "model_module": "@jupyter-widgets/controls",
1090
+ "model_name": "DescriptionStyleModel",
1091
+ "model_module_version": "1.5.0",
1092
+ "state": {
1093
+ "_model_module": "@jupyter-widgets/controls",
1094
+ "_model_module_version": "1.5.0",
1095
+ "_model_name": "DescriptionStyleModel",
1096
+ "_view_count": null,
1097
+ "_view_module": "@jupyter-widgets/base",
1098
+ "_view_module_version": "1.2.0",
1099
+ "_view_name": "StyleView",
1100
+ "description_width": ""
1101
+ }
1102
+ },
1103
+ "8c89d406ae534cf0a7ef99eba4263b2b": {
1104
+ "model_module": "@jupyter-widgets/base",
1105
+ "model_name": "LayoutModel",
1106
+ "model_module_version": "1.2.0",
1107
+ "state": {
1108
+ "_model_module": "@jupyter-widgets/base",
1109
+ "_model_module_version": "1.2.0",
1110
+ "_model_name": "LayoutModel",
1111
+ "_view_count": null,
1112
+ "_view_module": "@jupyter-widgets/base",
1113
+ "_view_module_version": "1.2.0",
1114
+ "_view_name": "LayoutView",
1115
+ "align_content": null,
1116
+ "align_items": null,
1117
+ "align_self": null,
1118
+ "border": null,
1119
+ "bottom": null,
1120
+ "display": null,
1121
+ "flex": null,
1122
+ "flex_flow": null,
1123
+ "grid_area": null,
1124
+ "grid_auto_columns": null,
1125
+ "grid_auto_flow": null,
1126
+ "grid_auto_rows": null,
1127
+ "grid_column": null,
1128
+ "grid_gap": null,
1129
+ "grid_row": null,
1130
+ "grid_template_areas": null,
1131
+ "grid_template_columns": null,
1132
+ "grid_template_rows": null,
1133
+ "height": null,
1134
+ "justify_content": null,
1135
+ "justify_items": null,
1136
+ "left": null,
1137
+ "margin": null,
1138
+ "max_height": null,
1139
+ "max_width": null,
1140
+ "min_height": null,
1141
+ "min_width": null,
1142
+ "object_fit": null,
1143
+ "object_position": null,
1144
+ "order": null,
1145
+ "overflow": null,
1146
+ "overflow_x": null,
1147
+ "overflow_y": null,
1148
+ "padding": null,
1149
+ "right": null,
1150
+ "top": null,
1151
+ "visibility": null,
1152
+ "width": null
1153
+ }
1154
+ },
1155
+ "8adaf7159dcf4b318c2fc5930dd8633d": {
1156
+ "model_module": "@jupyter-widgets/controls",
1157
+ "model_name": "ProgressStyleModel",
1158
+ "model_module_version": "1.5.0",
1159
+ "state": {
1160
+ "_model_module": "@jupyter-widgets/controls",
1161
+ "_model_module_version": "1.5.0",
1162
+ "_model_name": "ProgressStyleModel",
1163
+ "_view_count": null,
1164
+ "_view_module": "@jupyter-widgets/base",
1165
+ "_view_module_version": "1.2.0",
1166
+ "_view_name": "StyleView",
1167
+ "bar_color": null,
1168
+ "description_width": ""
1169
+ }
1170
+ },
1171
+ "24bd51fe6e81460f9a9c99a1961a4107": {
1172
+ "model_module": "@jupyter-widgets/base",
1173
+ "model_name": "LayoutModel",
1174
+ "model_module_version": "1.2.0",
1175
+ "state": {
1176
+ "_model_module": "@jupyter-widgets/base",
1177
+ "_model_module_version": "1.2.0",
1178
+ "_model_name": "LayoutModel",
1179
+ "_view_count": null,
1180
+ "_view_module": "@jupyter-widgets/base",
1181
+ "_view_module_version": "1.2.0",
1182
+ "_view_name": "LayoutView",
1183
+ "align_content": null,
1184
+ "align_items": null,
1185
+ "align_self": null,
1186
+ "border": null,
1187
+ "bottom": null,
1188
+ "display": null,
1189
+ "flex": null,
1190
+ "flex_flow": null,
1191
+ "grid_area": null,
1192
+ "grid_auto_columns": null,
1193
+ "grid_auto_flow": null,
1194
+ "grid_auto_rows": null,
1195
+ "grid_column": null,
1196
+ "grid_gap": null,
1197
+ "grid_row": null,
1198
+ "grid_template_areas": null,
1199
+ "grid_template_columns": null,
1200
+ "grid_template_rows": null,
1201
+ "height": null,
1202
+ "justify_content": null,
1203
+ "justify_items": null,
1204
+ "left": null,
1205
+ "margin": null,
1206
+ "max_height": null,
1207
+ "max_width": null,
1208
+ "min_height": null,
1209
+ "min_width": null,
1210
+ "object_fit": null,
1211
+ "object_position": null,
1212
+ "order": null,
1213
+ "overflow": null,
1214
+ "overflow_x": null,
1215
+ "overflow_y": null,
1216
+ "padding": null,
1217
+ "right": null,
1218
+ "top": null,
1219
+ "visibility": null,
1220
+ "width": null
1221
+ }
1222
+ },
1223
+ "2b0ffc94bfca468a89f0799cbef29ee5": {
1224
+ "model_module": "@jupyter-widgets/controls",
1225
+ "model_name": "DescriptionStyleModel",
1226
+ "model_module_version": "1.5.0",
1227
+ "state": {
1228
+ "_model_module": "@jupyter-widgets/controls",
1229
+ "_model_module_version": "1.5.0",
1230
+ "_model_name": "DescriptionStyleModel",
1231
+ "_view_count": null,
1232
+ "_view_module": "@jupyter-widgets/base",
1233
+ "_view_module_version": "1.2.0",
1234
+ "_view_name": "StyleView",
1235
+ "description_width": ""
1236
+ }
1237
+ },
1238
+ "c2b881fabd4f4758bd9aca516a579b4c": {
1239
+ "model_module": "@jupyter-widgets/controls",
1240
+ "model_name": "HBoxModel",
1241
+ "model_module_version": "1.5.0",
1242
+ "state": {
1243
+ "_dom_classes": [],
1244
+ "_model_module": "@jupyter-widgets/controls",
1245
+ "_model_module_version": "1.5.0",
1246
+ "_model_name": "HBoxModel",
1247
+ "_view_count": null,
1248
+ "_view_module": "@jupyter-widgets/controls",
1249
+ "_view_module_version": "1.5.0",
1250
+ "_view_name": "HBoxView",
1251
+ "box_style": "",
1252
+ "children": [
1253
+ "IPY_MODEL_6ab81736ee0643c7ae5e20978914fef4",
1254
+ "IPY_MODEL_84ee9c147755422fb74229a2817ad35a",
1255
+ "IPY_MODEL_35025439e8e545d28ee9f3c51df4f1bb"
1256
+ ],
1257
+ "layout": "IPY_MODEL_da989b5fe95449f6928355cd317d7f4a"
1258
+ }
1259
+ },
1260
+ "6ab81736ee0643c7ae5e20978914fef4": {
1261
+ "model_module": "@jupyter-widgets/controls",
1262
+ "model_name": "HTMLModel",
1263
+ "model_module_version": "1.5.0",
1264
+ "state": {
1265
+ "_dom_classes": [],
1266
+ "_model_module": "@jupyter-widgets/controls",
1267
+ "_model_module_version": "1.5.0",
1268
+ "_model_name": "HTMLModel",
1269
+ "_view_count": null,
1270
+ "_view_module": "@jupyter-widgets/controls",
1271
+ "_view_module_version": "1.5.0",
1272
+ "_view_name": "HTMLView",
1273
+ "description": "",
1274
+ "description_tooltip": null,
1275
+ "layout": "IPY_MODEL_ed8214d39c2e4e47a7b32e1152597642",
1276
+ "placeholder": "​",
1277
+ "style": "IPY_MODEL_6210d27773144f78aed58c4ad9aaa0a2",
1278
+ "value": "samples_mmlu_all_2024-12-05T11-08-04.943164.jsonl: 100%"
1279
+ }
1280
+ },
1281
+ "84ee9c147755422fb74229a2817ad35a": {
1282
+ "model_module": "@jupyter-widgets/controls",
1283
+ "model_name": "FloatProgressModel",
1284
+ "model_module_version": "1.5.0",
1285
+ "state": {
1286
+ "_dom_classes": [],
1287
+ "_model_module": "@jupyter-widgets/controls",
1288
+ "_model_module_version": "1.5.0",
1289
+ "_model_name": "FloatProgressModel",
1290
+ "_view_count": null,
1291
+ "_view_module": "@jupyter-widgets/controls",
1292
+ "_view_module_version": "1.5.0",
1293
+ "_view_name": "ProgressView",
1294
+ "bar_style": "success",
1295
+ "description": "",
1296
+ "description_tooltip": null,
1297
+ "layout": "IPY_MODEL_0e65b64cc85c4b52aa48c11f65ccceeb",
1298
+ "max": 89914374,
1299
+ "min": 0,
1300
+ "orientation": "horizontal",
1301
+ "style": "IPY_MODEL_85504ad2f7be45e1a828b5077905dad5",
1302
+ "value": 89914374
1303
+ }
1304
+ },
1305
+ "35025439e8e545d28ee9f3c51df4f1bb": {
1306
+ "model_module": "@jupyter-widgets/controls",
1307
+ "model_name": "HTMLModel",
1308
+ "model_module_version": "1.5.0",
1309
+ "state": {
1310
+ "_dom_classes": [],
1311
+ "_model_module": "@jupyter-widgets/controls",
1312
+ "_model_module_version": "1.5.0",
1313
+ "_model_name": "HTMLModel",
1314
+ "_view_count": null,
1315
+ "_view_module": "@jupyter-widgets/controls",
1316
+ "_view_module_version": "1.5.0",
1317
+ "_view_name": "HTMLView",
1318
+ "description": "",
1319
+ "description_tooltip": null,
1320
+ "layout": "IPY_MODEL_a638974916d74c239e287002bc1d089a",
1321
+ "placeholder": "​",
1322
+ "style": "IPY_MODEL_a6fcb58400a54716bda1e4dc511add95",
1323
+ "value": " 89.9M/89.9M [00:10&lt;00:00, 3.64MB/s]"
1324
+ }
1325
+ },
1326
+ "da989b5fe95449f6928355cd317d7f4a": {
1327
+ "model_module": "@jupyter-widgets/base",
1328
+ "model_name": "LayoutModel",
1329
+ "model_module_version": "1.2.0",
1330
+ "state": {
1331
+ "_model_module": "@jupyter-widgets/base",
1332
+ "_model_module_version": "1.2.0",
1333
+ "_model_name": "LayoutModel",
1334
+ "_view_count": null,
1335
+ "_view_module": "@jupyter-widgets/base",
1336
+ "_view_module_version": "1.2.0",
1337
+ "_view_name": "LayoutView",
1338
+ "align_content": null,
1339
+ "align_items": null,
1340
+ "align_self": null,
1341
+ "border": null,
1342
+ "bottom": null,
1343
+ "display": null,
1344
+ "flex": null,
1345
+ "flex_flow": null,
1346
+ "grid_area": null,
1347
+ "grid_auto_columns": null,
1348
+ "grid_auto_flow": null,
1349
+ "grid_auto_rows": null,
1350
+ "grid_column": null,
1351
+ "grid_gap": null,
1352
+ "grid_row": null,
1353
+ "grid_template_areas": null,
1354
+ "grid_template_columns": null,
1355
+ "grid_template_rows": null,
1356
+ "height": null,
1357
+ "justify_content": null,
1358
+ "justify_items": null,
1359
+ "left": null,
1360
+ "margin": null,
1361
+ "max_height": null,
1362
+ "max_width": null,
1363
+ "min_height": null,
1364
+ "min_width": null,
1365
+ "object_fit": null,
1366
+ "object_position": null,
1367
+ "order": null,
1368
+ "overflow": null,
1369
+ "overflow_x": null,
1370
+ "overflow_y": null,
1371
+ "padding": null,
1372
+ "right": null,
1373
+ "top": null,
1374
+ "visibility": null,
1375
+ "width": null
1376
+ }
1377
+ },
1378
+ "ed8214d39c2e4e47a7b32e1152597642": {
1379
+ "model_module": "@jupyter-widgets/base",
1380
+ "model_name": "LayoutModel",
1381
+ "model_module_version": "1.2.0",
1382
+ "state": {
1383
+ "_model_module": "@jupyter-widgets/base",
1384
+ "_model_module_version": "1.2.0",
1385
+ "_model_name": "LayoutModel",
1386
+ "_view_count": null,
1387
+ "_view_module": "@jupyter-widgets/base",
1388
+ "_view_module_version": "1.2.0",
1389
+ "_view_name": "LayoutView",
1390
+ "align_content": null,
1391
+ "align_items": null,
1392
+ "align_self": null,
1393
+ "border": null,
1394
+ "bottom": null,
1395
+ "display": null,
1396
+ "flex": null,
1397
+ "flex_flow": null,
1398
+ "grid_area": null,
1399
+ "grid_auto_columns": null,
1400
+ "grid_auto_flow": null,
1401
+ "grid_auto_rows": null,
1402
+ "grid_column": null,
1403
+ "grid_gap": null,
1404
+ "grid_row": null,
1405
+ "grid_template_areas": null,
1406
+ "grid_template_columns": null,
1407
+ "grid_template_rows": null,
1408
+ "height": null,
1409
+ "justify_content": null,
1410
+ "justify_items": null,
1411
+ "left": null,
1412
+ "margin": null,
1413
+ "max_height": null,
1414
+ "max_width": null,
1415
+ "min_height": null,
1416
+ "min_width": null,
1417
+ "object_fit": null,
1418
+ "object_position": null,
1419
+ "order": null,
1420
+ "overflow": null,
1421
+ "overflow_x": null,
1422
+ "overflow_y": null,
1423
+ "padding": null,
1424
+ "right": null,
1425
+ "top": null,
1426
+ "visibility": null,
1427
+ "width": null
1428
+ }
1429
+ },
1430
+ "6210d27773144f78aed58c4ad9aaa0a2": {
1431
+ "model_module": "@jupyter-widgets/controls",
1432
+ "model_name": "DescriptionStyleModel",
1433
+ "model_module_version": "1.5.0",
1434
+ "state": {
1435
+ "_model_module": "@jupyter-widgets/controls",
1436
+ "_model_module_version": "1.5.0",
1437
+ "_model_name": "DescriptionStyleModel",
1438
+ "_view_count": null,
1439
+ "_view_module": "@jupyter-widgets/base",
1440
+ "_view_module_version": "1.2.0",
1441
+ "_view_name": "StyleView",
1442
+ "description_width": ""
1443
+ }
1444
+ },
1445
+ "0e65b64cc85c4b52aa48c11f65ccceeb": {
1446
+ "model_module": "@jupyter-widgets/base",
1447
+ "model_name": "LayoutModel",
1448
+ "model_module_version": "1.2.0",
1449
+ "state": {
1450
+ "_model_module": "@jupyter-widgets/base",
1451
+ "_model_module_version": "1.2.0",
1452
+ "_model_name": "LayoutModel",
1453
+ "_view_count": null,
1454
+ "_view_module": "@jupyter-widgets/base",
1455
+ "_view_module_version": "1.2.0",
1456
+ "_view_name": "LayoutView",
1457
+ "align_content": null,
1458
+ "align_items": null,
1459
+ "align_self": null,
1460
+ "border": null,
1461
+ "bottom": null,
1462
+ "display": null,
1463
+ "flex": null,
1464
+ "flex_flow": null,
1465
+ "grid_area": null,
1466
+ "grid_auto_columns": null,
1467
+ "grid_auto_flow": null,
1468
+ "grid_auto_rows": null,
1469
+ "grid_column": null,
1470
+ "grid_gap": null,
1471
+ "grid_row": null,
1472
+ "grid_template_areas": null,
1473
+ "grid_template_columns": null,
1474
+ "grid_template_rows": null,
1475
+ "height": null,
1476
+ "justify_content": null,
1477
+ "justify_items": null,
1478
+ "left": null,
1479
+ "margin": null,
1480
+ "max_height": null,
1481
+ "max_width": null,
1482
+ "min_height": null,
1483
+ "min_width": null,
1484
+ "object_fit": null,
1485
+ "object_position": null,
1486
+ "order": null,
1487
+ "overflow": null,
1488
+ "overflow_x": null,
1489
+ "overflow_y": null,
1490
+ "padding": null,
1491
+ "right": null,
1492
+ "top": null,
1493
+ "visibility": null,
1494
+ "width": null
1495
+ }
1496
+ },
1497
+ "85504ad2f7be45e1a828b5077905dad5": {
1498
+ "model_module": "@jupyter-widgets/controls",
1499
+ "model_name": "ProgressStyleModel",
1500
+ "model_module_version": "1.5.0",
1501
+ "state": {
1502
+ "_model_module": "@jupyter-widgets/controls",
1503
+ "_model_module_version": "1.5.0",
1504
+ "_model_name": "ProgressStyleModel",
1505
+ "_view_count": null,
1506
+ "_view_module": "@jupyter-widgets/base",
1507
+ "_view_module_version": "1.2.0",
1508
+ "_view_name": "StyleView",
1509
+ "bar_color": null,
1510
+ "description_width": ""
1511
+ }
1512
+ },
1513
+ "a638974916d74c239e287002bc1d089a": {
1514
+ "model_module": "@jupyter-widgets/base",
1515
+ "model_name": "LayoutModel",
1516
+ "model_module_version": "1.2.0",
1517
+ "state": {
1518
+ "_model_module": "@jupyter-widgets/base",
1519
+ "_model_module_version": "1.2.0",
1520
+ "_model_name": "LayoutModel",
1521
+ "_view_count": null,
1522
+ "_view_module": "@jupyter-widgets/base",
1523
+ "_view_module_version": "1.2.0",
1524
+ "_view_name": "LayoutView",
1525
+ "align_content": null,
1526
+ "align_items": null,
1527
+ "align_self": null,
1528
+ "border": null,
1529
+ "bottom": null,
1530
+ "display": null,
1531
+ "flex": null,
1532
+ "flex_flow": null,
1533
+ "grid_area": null,
1534
+ "grid_auto_columns": null,
1535
+ "grid_auto_flow": null,
1536
+ "grid_auto_rows": null,
1537
+ "grid_column": null,
1538
+ "grid_gap": null,
1539
+ "grid_row": null,
1540
+ "grid_template_areas": null,
1541
+ "grid_template_columns": null,
1542
+ "grid_template_rows": null,
1543
+ "height": null,
1544
+ "justify_content": null,
1545
+ "justify_items": null,
1546
+ "left": null,
1547
+ "margin": null,
1548
+ "max_height": null,
1549
+ "max_width": null,
1550
+ "min_height": null,
1551
+ "min_width": null,
1552
+ "object_fit": null,
1553
+ "object_position": null,
1554
+ "order": null,
1555
+ "overflow": null,
1556
+ "overflow_x": null,
1557
+ "overflow_y": null,
1558
+ "padding": null,
1559
+ "right": null,
1560
+ "top": null,
1561
+ "visibility": null,
1562
+ "width": null
1563
+ }
1564
+ },
1565
+ "a6fcb58400a54716bda1e4dc511add95": {
1566
+ "model_module": "@jupyter-widgets/controls",
1567
+ "model_name": "DescriptionStyleModel",
1568
+ "model_module_version": "1.5.0",
1569
+ "state": {
1570
+ "_model_module": "@jupyter-widgets/controls",
1571
+ "_model_module_version": "1.5.0",
1572
+ "_model_name": "DescriptionStyleModel",
1573
+ "_view_count": null,
1574
+ "_view_module": "@jupyter-widgets/base",
1575
+ "_view_module_version": "1.2.0",
1576
+ "_view_name": "StyleView",
1577
+ "description_width": ""
1578
+ }
1579
+ }
1580
+ }
1581
  }
1582
  },
1583
  "nbformat": 4,