Upload 2 files
Browse files
llm_metaeval_eval_harness_Mixtral_8x22B_v0_1_mmlu.ipynb
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "U8RTc2PmnX-v"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"Initial setup"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {
|
16 |
+
"id": "kGW7vfRkrqHe"
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"!pip install -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"metadata": {
|
27 |
+
"id": "2I850FIsCVNw"
|
28 |
+
},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"from datetime import datetime\n",
|
32 |
+
"import os\n",
|
33 |
+
"from huggingface_hub import login, upload_folder\n",
|
34 |
+
"from google.colab import userdata\n",
|
35 |
+
"import shutil\n",
|
36 |
+
"\n",
|
37 |
+
"HF_TOKEN = userdata.get('HF_TOKEN')\n",
|
38 |
+
"login(HF_TOKEN, True)\n",
|
39 |
+
"BASE_DATASET='mmlu'\n",
|
40 |
+
"REPO_ID='flunardelli/llm-metaeval'\n",
|
41 |
+
"BASE_FOLDER=f\"/content/{BASE_DATASET}/\"#{datetime.now().strftime('%Y-%m-%dT%H-%M-%S')}\n",
|
42 |
+
"OUTPUT_FOLDER=os.path.join(BASE_FOLDER,'output')\n",
|
43 |
+
"TASK_FOLDER=os.path.join(BASE_FOLDER,'tasks')\n",
|
44 |
+
"#shutil.rmtree(BASE_FOLDER)\n",
|
45 |
+
"os.makedirs(OUTPUT_FOLDER)\n",
|
46 |
+
"os.makedirs(TASK_FOLDER)\n",
|
47 |
+
"os.environ['HF_TOKEN'] = HF_TOKEN\n",
|
48 |
+
"os.environ['OUTPUT_FOLDER'] = OUTPUT_FOLDER\n",
|
49 |
+
"os.environ['TASK_FOLDER'] = TASK_FOLDER\n",
|
50 |
+
"\n",
|
51 |
+
"def hf_upload_folder(folder_path):\n",
|
52 |
+
" upload_folder(\n",
|
53 |
+
" folder_path=folder_path,\n",
|
54 |
+
" path_in_repo=\"evals/\",\n",
|
55 |
+
" repo_id=REPO_ID,\n",
|
56 |
+
" token=HF_TOKEN,\n",
|
57 |
+
" repo_type=\"dataset\"\n",
|
58 |
+
" )\n",
|
59 |
+
"\n",
|
60 |
+
"def create_task(content, filename):\n",
|
61 |
+
" filename_path = os.path.join(TASK_FOLDER,filename)\n",
|
62 |
+
" with open(filename_path, \"w\") as f:\n",
|
63 |
+
" f.write(content)"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "markdown",
|
68 |
+
"metadata": {
|
69 |
+
"id": "Jd2JwKZaPkNS"
|
70 |
+
},
|
71 |
+
"source": [
|
72 |
+
"Create task for MMLU all datasets"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": null,
|
78 |
+
"metadata": {
|
79 |
+
"id": "xP0cC_sHih7C"
|
80 |
+
},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"YAML_mmlu_en_us_string = \"\"\"\n",
|
84 |
+
"task: mmlu_all\n",
|
85 |
+
"dataset_path: cais/mmlu\n",
|
86 |
+
"dataset_name: all\n",
|
87 |
+
"description: \"MMLU dataset\"\n",
|
88 |
+
"test_split: test\n",
|
89 |
+
"fewshot_split: dev\n",
|
90 |
+
"fewshot_config:\n",
|
91 |
+
" sampler: first_n\n",
|
92 |
+
"output_type: multiple_choice\n",
|
93 |
+
"doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
|
94 |
+
"doc_to_choice: [\"A\", \"B\", \"C\", \"D\"]\n",
|
95 |
+
"doc_to_target: answer\n",
|
96 |
+
"metric_list:\n",
|
97 |
+
" - metric: acc\n",
|
98 |
+
" aggregation: mean\n",
|
99 |
+
" higher_is_better: true\n",
|
100 |
+
" - metric: acc_norm\n",
|
101 |
+
" aggregation: mean\n",
|
102 |
+
" higher_is_better: true\n",
|
103 |
+
"\"\"\"\n",
|
104 |
+
"create_task(YAML_mmlu_en_us_string, 'mmlu_en_us.yaml')\n",
|
105 |
+
"os.environ['TASKS'] = 'mmlu_all'\n"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "markdown",
|
110 |
+
"metadata": {
|
111 |
+
"id": "1fEX-49hQ-Be"
|
112 |
+
},
|
113 |
+
"source": [
|
114 |
+
"Mistral Models"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": null,
|
120 |
+
"metadata": {
|
121 |
+
"id": "3cHI2qxN2fJ0"
|
122 |
+
},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"!accelerate launch -m lm_eval \\\n",
|
126 |
+
"--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1 \\\n",
|
127 |
+
"--tasks $TASKS \\\n",
|
128 |
+
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
129 |
+
"--batch_size auto\n",
|
130 |
+
"#--limit 10 \\"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"metadata": {
|
137 |
+
"id": "mGGdqBNBzFYL"
|
138 |
+
},
|
139 |
+
"outputs": [],
|
140 |
+
"source": [
|
141 |
+
"hf_upload_folder(BASE_FOLDER)"
|
142 |
+
]
|
143 |
+
}
|
144 |
+
],
|
145 |
+
"metadata": {
|
146 |
+
"accelerator": "GPU",
|
147 |
+
"colab": {
|
148 |
+
"gpuType": "L4",
|
149 |
+
"machine_shape": "hm",
|
150 |
+
"provenance": []
|
151 |
+
},
|
152 |
+
"kernelspec": {
|
153 |
+
"display_name": "Python 3",
|
154 |
+
"name": "python3"
|
155 |
+
},
|
156 |
+
"language_info": {
|
157 |
+
"name": "python"
|
158 |
+
}
|
159 |
+
},
|
160 |
+
"nbformat": 4,
|
161 |
+
"nbformat_minor": 0
|
162 |
+
}
|
llm_metaeval_eval_harness_Mixtral_8x22B_v0_1_pub.ipynb
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4",
|
8 |
+
"machine_shape": "hm"
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
},
|
17 |
+
"accelerator": "GPU"
|
18 |
+
},
|
19 |
+
"cells": [
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"source": [
|
23 |
+
"Initial setup"
|
24 |
+
],
|
25 |
+
"metadata": {
|
26 |
+
"id": "U8RTc2PmnX-v"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"source": [
|
32 |
+
"!pip install -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt"
|
33 |
+
],
|
34 |
+
"metadata": {
|
35 |
+
"id": "kGW7vfRkrqHe"
|
36 |
+
},
|
37 |
+
"execution_count": null,
|
38 |
+
"outputs": []
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"source": [
|
43 |
+
"from datetime import datetime\n",
|
44 |
+
"import os\n",
|
45 |
+
"from huggingface_hub import login, upload_folder\n",
|
46 |
+
"from google.colab import userdata\n",
|
47 |
+
"import shutil\n",
|
48 |
+
"\n",
|
49 |
+
"HF_TOKEN = userdata.get('HF_TOKEN')\n",
|
50 |
+
"login(HF_TOKEN, True)\n",
|
51 |
+
"BASE_DATASET='pub'\n",
|
52 |
+
"REPO_ID='flunardelli/llm-metaeval'\n",
|
53 |
+
"BASE_FOLDER=f\"/content/{BASE_DATASET}/\"#{datetime.now().strftime('%Y-%m-%dT%H-%M-%S')}\n",
|
54 |
+
"OUTPUT_FOLDER=os.path.join(BASE_FOLDER,'output')\n",
|
55 |
+
"TASK_FOLDER=os.path.join(BASE_FOLDER,'tasks')\n",
|
56 |
+
"#shutil.rmtree(BASE_FOLDER)\n",
|
57 |
+
"os.makedirs(OUTPUT_FOLDER)\n",
|
58 |
+
"os.makedirs(TASK_FOLDER)\n",
|
59 |
+
"os.environ['HF_TOKEN'] = HF_TOKEN\n",
|
60 |
+
"os.environ['OUTPUT_FOLDER'] = OUTPUT_FOLDER\n",
|
61 |
+
"os.environ['TASK_FOLDER'] = TASK_FOLDER\n",
|
62 |
+
"\n",
|
63 |
+
"def hf_upload_folder(folder_path):\n",
|
64 |
+
" upload_folder(\n",
|
65 |
+
" folder_path=folder_path,\n",
|
66 |
+
" path_in_repo=\"evals/\",\n",
|
67 |
+
" repo_id=REPO_ID,\n",
|
68 |
+
" token=HF_TOKEN,\n",
|
69 |
+
" repo_type=\"dataset\"\n",
|
70 |
+
" )\n",
|
71 |
+
"\n",
|
72 |
+
"def create_task(content, filename):\n",
|
73 |
+
" filename_path = os.path.join(TASK_FOLDER,filename)\n",
|
74 |
+
" with open(filename_path, \"w\") as f:\n",
|
75 |
+
" f.write(content)"
|
76 |
+
],
|
77 |
+
"metadata": {
|
78 |
+
"id": "IHxFvAC4eSnW"
|
79 |
+
},
|
80 |
+
"execution_count": null,
|
81 |
+
"outputs": []
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "markdown",
|
85 |
+
"source": [
|
86 |
+
"Create task for PUB all datasets"
|
87 |
+
],
|
88 |
+
"metadata": {
|
89 |
+
"id": "Jd2JwKZaPkNS"
|
90 |
+
}
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"source": [
|
95 |
+
"YAML_template_pub_tasks = [\n",
|
96 |
+
" (\"task_1\", 2),\n",
|
97 |
+
" (\"task_2\", 5),\n",
|
98 |
+
" (\"task_3\", 5),\n",
|
99 |
+
" (\"task_4\", 3),\n",
|
100 |
+
" (\"task_5\", 2),\n",
|
101 |
+
" (\"task_6\", 2),\n",
|
102 |
+
" (\"task_7\", 2),\n",
|
103 |
+
" (\"task_8\", 2),\n",
|
104 |
+
" (\"task_9\", 2),\n",
|
105 |
+
" (\"task_10\", 3),\n",
|
106 |
+
" (\"task_11\", 3),\n",
|
107 |
+
" (\"task_12\", 2),\n",
|
108 |
+
" (\"task_13\", 2),\n",
|
109 |
+
" (\"task_14\", 4)\n",
|
110 |
+
"]\n",
|
111 |
+
"\n",
|
112 |
+
"default_doc_to_text = \"{{pretext.strip()}}\\n {{options[0]}}\\n{{options[1]}}\\\\n{{options[2]}}\\\\n{{options[3]}}\\\\n{{options[4]}}\\\\nAnswer:\"\n",
|
113 |
+
"\n",
|
114 |
+
"\n",
|
115 |
+
"YAML_template_pub_base = \"\"\"\n",
|
116 |
+
"task: __task_name__\n",
|
117 |
+
"dataset_path: flunardelli/PUB\n",
|
118 |
+
"dataset_name: __dataset_name__\n",
|
119 |
+
"description: \"PUB\"\n",
|
120 |
+
"test_split: test\n",
|
121 |
+
"fewshot_split: test\n",
|
122 |
+
"fewshot_config:\n",
|
123 |
+
" sampler: first_n\n",
|
124 |
+
"num_fewshot: 10\n",
|
125 |
+
"output_type: multiple_choice\n",
|
126 |
+
"doc_to_text: \"{{pretext.strip()}}\\n Options:\\n__options__\\nAnswer:\"\n",
|
127 |
+
"doc_to_choice: \"{{options}}\"\n",
|
128 |
+
"doc_to_target: \"correct answer\"\n",
|
129 |
+
"metric_list:\n",
|
130 |
+
" - metric: acc\n",
|
131 |
+
" aggregation: mean\n",
|
132 |
+
" higher_is_better: true\n",
|
133 |
+
" - metric: acc_norm\n",
|
134 |
+
" aggregation: mean\n",
|
135 |
+
" higher_is_better: true\n",
|
136 |
+
"\"\"\"\n",
|
137 |
+
"tasks = []\n",
|
138 |
+
"for t in YAML_template_pub_tasks:\n",
|
139 |
+
" dataset_name, num_choices = t\n",
|
140 |
+
" task_name = f\"pub_{dataset_name}\"\n",
|
141 |
+
" tasks.append(task_name)\n",
|
142 |
+
" templace_choices = '\\n'.join([\"{{options[__i__]}}\".replace('__i__',str(i)) for i in range(num_choices)])\n",
|
143 |
+
" template = (YAML_template_pub_base\n",
|
144 |
+
" .replace('__options__',templace_choices)\n",
|
145 |
+
" .replace('__dataset_name__',dataset_name).replace('__task_name__',task_name)\n",
|
146 |
+
" )\n",
|
147 |
+
" create_task(template, f\"pub_{dataset_name}.yaml\")\n",
|
148 |
+
"\n",
|
149 |
+
"os.environ['TASKS'] = ','.join(tasks)"
|
150 |
+
],
|
151 |
+
"metadata": {
|
152 |
+
"id": "xP0cC_sHih7C"
|
153 |
+
},
|
154 |
+
"execution_count": null,
|
155 |
+
"outputs": []
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "markdown",
|
159 |
+
"source": [
|
160 |
+
"Mistral Models"
|
161 |
+
],
|
162 |
+
"metadata": {
|
163 |
+
"id": "1fEX-49hQ-Be"
|
164 |
+
}
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"source": [
|
169 |
+
"!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
|
170 |
+
"--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1 \\\n",
|
171 |
+
"--tasks $i \\\n",
|
172 |
+
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
173 |
+
"--batch_size auto; done"
|
174 |
+
],
|
175 |
+
"metadata": {
|
176 |
+
"id": "LPqTo2z29RKx"
|
177 |
+
},
|
178 |
+
"execution_count": null,
|
179 |
+
"outputs": []
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "markdown",
|
183 |
+
"source": [
|
184 |
+
"Save output results"
|
185 |
+
],
|
186 |
+
"metadata": {
|
187 |
+
"id": "U8qh9BEbgBy7"
|
188 |
+
}
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"source": [
|
193 |
+
"hf_upload_folder(BASE_FOLDER)"
|
194 |
+
],
|
195 |
+
"metadata": {
|
196 |
+
"id": "ZQl05b1rf83u"
|
197 |
+
},
|
198 |
+
"execution_count": null,
|
199 |
+
"outputs": []
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "markdown",
|
203 |
+
"source": [],
|
204 |
+
"metadata": {
|
205 |
+
"id": "ZUTPHnV0kMB1"
|
206 |
+
}
|
207 |
+
}
|
208 |
+
]
|
209 |
+
}
|