File size: 4,237 Bytes
1fff313
 
 
 
 
 
 
5144b79
 
55af1cd
 
f774571
55af1cd
 
 
 
 
 
 
 
 
1fff313
 
f774571
 
 
 
 
55af1cd
 
 
1fff313
 
 
 
 
5144b79
 
1fff313
 
f774571
1fff313
 
 
 
f774571
1fff313
 
5144b79
 
1fff313
 
 
 
 
 
f774571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fff313
f774571
 
 
 
1fff313
f774571
 
 
 
 
 
 
1fff313
f774571
 
 
 
 
 
 
 
1fff313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91c78a9
5144b79
 
 
 
 
 
 
 
 
91c78a9
1fff313
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter
from mnist_classifier.dataset import MNISTDataModule
from mnist_classifier.model import MNISTModel
from datetime import datetime
import os
import random
import numpy as np
from tqdm import tqdm

def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

def train():
    # Training loop
    learning_rate = 0.001
    batch_size = 128
    epochs = 10

    # Set seed for reproducibility
    set_seed(42)
    
    # Set device
    device = torch.device('cuda')
    print(f"Using device: {device}")

    # Initialize tensorboard
    log_dir = 'runs/mnist_experiment_' + datetime.now().strftime('%Y%m%d-%H%M%S')
    writer = SummaryWriter(log_dir)

    # Setup data
    data_module = MNISTDataModule(batch_size=batch_size, val_batch_size=1000)
    train_loader, test_loader = data_module.get_dataloaders()

    # Initialize model, optimizer, and loss function
    model = MNISTModel().to(device)
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    criterion = nn.CrossEntropyLoss()


    num_epochs = epochs
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        correct = 0
        total = 0

        with tqdm(total=len(train_loader), desc=f"Epoch {epoch+1}/{num_epochs}", unit="batch") as pbar:
            for batch_idx, batch in enumerate(train_loader):
                images, labels = batch[0].to(device), batch[1].to(device)

                if batch_idx == 0:
                    print(f"images shape: {images.shape}")
                    print(f"labels shape: {labels.shape}")
                    
                    # print number of images in batch
                    print(f"Number of images in batch: {len(images)}")

                optimizer.zero_grad()
                outputs = model(images)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()

                running_loss += loss.item()
                _, predicted = outputs.max(1)
                total += labels.size(0)
                correct += predicted.eq(labels).sum().item()

                # Update tqdm progress bar
                pbar.set_postfix({
                    'loss': running_loss / (batch_idx + 1),
                    'accuracy': 100. * correct / total,
                    'step': batch_idx + 1
                })
                pbar.update(1)

                if batch_idx % 100 == 99:
                    writer.add_scalar('training loss',
                                      running_loss / 100,
                                      epoch * len(train_loader) + batch_idx)
                    writer.add_scalar('training accuracy',
                                      100. * correct / total,
                                      epoch * len(train_loader) + batch_idx)
                    running_loss = 0.0

        # Validation phase
        model.eval()
        test_loss = 0
        correct = 0
        total = 0
        with torch.no_grad():
            for batch in test_loader:
                images = batch[0].to(device)
                labels = batch[1].to(device)
                outputs = model(images)
                loss = criterion(outputs, labels)
                
                test_loss += loss.item()
                _, predicted = outputs.max(1)
                total += labels.size(0)
                correct += predicted.eq(labels).sum().item()

        accuracy = 100. * correct / total
        writer.add_scalar('test accuracy', accuracy, epoch)
        print(f'Epoch {epoch+1}: Test Accuracy: {accuracy:.2f}%')

    writer.close()

    # Ensure the directory exists
    os.makedirs("./models", exist_ok=True)

    # Format the filename with the config parameters
    filename = f"./models/mnist_model_lr{learning_rate}_bs{batch_size}_ep{epochs}.pth"
    torch.save(model.state_dict(), filename)

if __name__ == "__main__":
    train()