fnlp
/

English
File size: 3,651 Bytes
85f235a
 
 
 
 
 
 
 
 
 
 
 
c224a77
85f235a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f15b4d
85f235a
6f15b4d
85f235a
6f15b4d
85f235a
6f15b4d
85f235a
6f15b4d
85f235a
6f15b4d
85f235a
6f15b4d
85f235a
6f15b4d
85f235a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e3f688
 
 
2527311
3e3f688
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
language:
- en
base_model:
- meta-llama/Llama-3.1-8B
---

# Llama Scope

[**Technical Report Link**](https://arxiv.org/abs/2410.20526) 

[**Use with OpenMOSS lm_sae Github Repo**](https://github.com/OpenMOSS/Language-Model-SAEs/blob/main/examples/loading_llamascope_saes.ipynb) 

[**Use with SAELens**] 

[**Explore in Neuronpedia**]

Sparse Autoencoders (SAEs) have emerged as a powerful unsupervised method for extracting sparse representations from language models, yet scalable training remains a significant challenge. We introduce a suite of 256 improved TopK SAEs, trained on each layer and sublayer of the Llama-3.1-8B-Base model, with 32K and 128K features.

This is a frontpage of all Llama Scope SAEs. Please see the following link for checkpoints.

## Naming Convention

L[Layer][Position]-[Expansion]x

For instance, an SAE with 8x the hidden size of Llama-3.1-8B, i.e. 32K features, trained on the 15th post-MLP residual stream is called L15R-8x.

## Checkpoints

[**Llama-3.1-8B-LXR-8x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXR-8x/tree/main)

[**Llama-3.1-8B-LXA-8x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXA-8x/tree/main)

[**Llama-3.1-8B-LXM-8x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXM-8x/tree/main)

[**Llama-3.1-8B-LXTC-8x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXTC-8x/tree/main)

[**Llama-3.1-8B-LXR-32x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXR-32x/tree/main)

[**Llama-3.1-8B-LXA-32x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXA-32x/tree/main)

[**Llama-3.1-8B-LXM-32x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXM-32x/tree/main)

[**Llama-3.1-8B-LXTC-32x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXTC-32x/tree/main)

## Llama Scope SAE Overview

<center>

|                       | **Llama Scope**               | **Scaling Monosemanticity**    | **GPT-4 SAE**                    | **Gemma Scope**                   |
|-----------------------|:-----------------------------:|:------------------------------:|:--------------------------------:|:---------------------------------:|
| **Models**            | Llama-3.1 8B (Open Source)    | Claude-3.0 Sonnet (Proprietary) | GPT-4 (Proprietary)              | Gemma-2 2B & 9B (Open Source)     |
| **SAE Training Data** | SlimPajama                    | Proprietary                     | Proprietary                      | Proprietary, Sampled from Mesnard et al. (2024) |
| **SAE Position (Layer)** | Every Layer              | The Middle Layer                | 5/6 Late Layer     | Every Layer                       |
| **SAE Position (Site)**  | R, A, M, TC              | R                               | R                                | R, A, M, TC                       |
| **SAE Width (# Features)** | 32K, 128K              | 1M, 4M, 34M                     | 128K, 1M, 16M                    | 16K, 64K, 128K, 256K - 1M (Partial) |
| **SAE Width (Expansion Factor)** | 8x, 32x       | Proprietary                     | Proprietary                      | 4.6x, 7.1x, 28.5x, 36.6x         |
| **Activation Function** | TopK-ReLU                 | ReLU                            | TopK-ReLU                        | JumpReLU                          |

</center>


## Citation

Please cite as:

```
@article{he2024llamascope,
  title={Llama Scope: Extracting Millions of Features from Llama-3.1-8B with Sparse Autoencoders},
  author={He, Zhengfu and Shu, Wentao and Ge, Xuyang and Chen, Lingjie and Wang, Junxuan and Zhou, Yunhua and Liu, Frances and Guo, Qipeng and Huang, Xuanjing and Wu, Zuxuan and others},
  journal={arXiv preprint arXiv:2410.20526},
  year={2024}
}
```