File size: 3,651 Bytes
85f235a c224a77 85f235a 6f15b4d 85f235a 6f15b4d 85f235a 6f15b4d 85f235a 6f15b4d 85f235a 6f15b4d 85f235a 6f15b4d 85f235a 6f15b4d 85f235a 6f15b4d 85f235a 3e3f688 2527311 3e3f688 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
language:
- en
base_model:
- meta-llama/Llama-3.1-8B
---
# Llama Scope
[**Technical Report Link**](https://arxiv.org/abs/2410.20526)
[**Use with OpenMOSS lm_sae Github Repo**](https://github.com/OpenMOSS/Language-Model-SAEs/blob/main/examples/loading_llamascope_saes.ipynb)
[**Use with SAELens**]
[**Explore in Neuronpedia**]
Sparse Autoencoders (SAEs) have emerged as a powerful unsupervised method for extracting sparse representations from language models, yet scalable training remains a significant challenge. We introduce a suite of 256 improved TopK SAEs, trained on each layer and sublayer of the Llama-3.1-8B-Base model, with 32K and 128K features.
This is a frontpage of all Llama Scope SAEs. Please see the following link for checkpoints.
## Naming Convention
L[Layer][Position]-[Expansion]x
For instance, an SAE with 8x the hidden size of Llama-3.1-8B, i.e. 32K features, trained on the 15th post-MLP residual stream is called L15R-8x.
## Checkpoints
[**Llama-3.1-8B-LXR-8x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXR-8x/tree/main)
[**Llama-3.1-8B-LXA-8x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXA-8x/tree/main)
[**Llama-3.1-8B-LXM-8x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXM-8x/tree/main)
[**Llama-3.1-8B-LXTC-8x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXTC-8x/tree/main)
[**Llama-3.1-8B-LXR-32x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXR-32x/tree/main)
[**Llama-3.1-8B-LXA-32x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXA-32x/tree/main)
[**Llama-3.1-8B-LXM-32x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXM-32x/tree/main)
[**Llama-3.1-8B-LXTC-32x**](https://huggingface.co/fnlp/Llama3_1-8B-Base-LXTC-32x/tree/main)
## Llama Scope SAE Overview
<center>
| | **Llama Scope** | **Scaling Monosemanticity** | **GPT-4 SAE** | **Gemma Scope** |
|-----------------------|:-----------------------------:|:------------------------------:|:--------------------------------:|:---------------------------------:|
| **Models** | Llama-3.1 8B (Open Source) | Claude-3.0 Sonnet (Proprietary) | GPT-4 (Proprietary) | Gemma-2 2B & 9B (Open Source) |
| **SAE Training Data** | SlimPajama | Proprietary | Proprietary | Proprietary, Sampled from Mesnard et al. (2024) |
| **SAE Position (Layer)** | Every Layer | The Middle Layer | 5/6 Late Layer | Every Layer |
| **SAE Position (Site)** | R, A, M, TC | R | R | R, A, M, TC |
| **SAE Width (# Features)** | 32K, 128K | 1M, 4M, 34M | 128K, 1M, 16M | 16K, 64K, 128K, 256K - 1M (Partial) |
| **SAE Width (Expansion Factor)** | 8x, 32x | Proprietary | Proprietary | 4.6x, 7.1x, 28.5x, 36.6x |
| **Activation Function** | TopK-ReLU | ReLU | TopK-ReLU | JumpReLU |
</center>
## Citation
Please cite as:
```
@article{he2024llamascope,
title={Llama Scope: Extracting Millions of Features from Llama-3.1-8B with Sparse Autoencoders},
author={He, Zhengfu and Shu, Wentao and Ge, Xuyang and Chen, Lingjie and Wang, Junxuan and Zhou, Yunhua and Liu, Frances and Guo, Qipeng and Huang, Xuanjing and Wu, Zuxuan and others},
journal={arXiv preprint arXiv:2410.20526},
year={2024}
}
```
|