Object Detection
TensorBoard
PyTorch
English
ultralytics
v8
ultralyticsplus
yolov8
yolo
vision
table detection
table extraction
table classification
document analysis
unstructured document
unstructured table extraction
structured table extraction
unstructured table detection
structured table detection
Eval Results
File size: 1,568 Bytes
5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 921daf1 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 921daf1 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 5b4c209 a4ef907 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
tags:
- ultralyticsplus
- yolov8
- ultralytics
- yolo
- vision
- object-detection
- pytorch
library_name: ultralytics
library_version: 8.0.43
inference: false
model-index:
- name: foduucom/table-detection-and-extraction
results:
- task:
type: object-detection
metrics:
- type: precision # since [email protected] is not available on hf.co/metrics
value: 0.96196 # min: 0.0 - max: 1.0
name: [email protected](box)
---
<div align="center">
<img width="640" alt="foduucom/table-detection-and-extraction" src="https://huggingface.co/foduucom/table-detection-and-extraction/resolve/main/thumbnail.jpg">
</div>
### Supported Labels
```
['bordered', 'borderless']
```
### How to use
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
```bash
pip install ultralyticsplus==0.0.28 ultralytics==8.0.43
```
- Load model and perform prediction:
```python
from ultralyticsplus import YOLO, render_result
# load model
model = YOLO('foduucom/table-detection-and-extraction')
# set model parameters
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()
```
|