nehulagrawal commited on
Commit
2166828
1 Parent(s): 68b78b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -29
README.md CHANGED
@@ -85,50 +85,40 @@ Users should be informed about the model's limitations and potential biases. Fur
85
 
86
  Load model and perform prediction:
87
 
 
 
88
 
89
- ### How to use
90
-
91
- - Install [yolov5](https://github.com/fcakyon/yolov5-pip):
92
 
93
  ```bash
94
- pip install -U yolov5
95
  ```
96
 
97
- - Load model and perform prediction:
98
 
99
  ```python
100
- import yolov5
101
 
102
  # load model
103
- model = yolov5.load('foduucom/object_detection')
104
-
105
  # set model parameters
106
- model.conf = 0.25 # NMS confidence threshold
107
- model.iou = 0.45 # NMS IoU threshold
108
- model.agnostic = False # NMS class-agnostic
109
- model.multi_label = False # NMS multiple labels per box
110
- model.max_det = 1000 # maximum number of detections per image
111
 
112
  # set image
113
- img = path
114
 
115
  # perform inference
116
- results = model(img, size=640)
117
-
118
- # inference with test time augmentation
119
- results = model(img, augment=True)
120
-
121
- # parse results
122
- predictions = results.pred[0]
123
- boxes = predictions[:, :4] # x1, y1, x2, y2
124
- scores = predictions[:, 4]
125
- categories = predictions[:, 5]
126
-
127
- # show detection bounding boxes on image
128
- results.show()
129
 
130
- # save results into "results/" folder
131
- results.save(save_dir='results/')
 
 
132
  ```
133
 
134
  - Finetune the model on your custom dataset:
 
85
 
86
  Load model and perform prediction:
87
 
88
+ ## How to Get Started with the Model
89
+ To get started with the YOLOv8s object Detection and Classification model, follow these steps:
90
 
91
+ 1. Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus) and [ultralytics](https://github.com/ultralytics/ultralytics) libraries using pip:
 
 
92
 
93
  ```bash
94
+ pip install ultralyticsplus ultralytics
95
  ```
96
 
97
+ 2. Load the model and perform prediction using the provided code snippet.
98
 
99
  ```python
100
+ from ultralyticsplus import YOLO, render_result
101
 
102
  # load model
103
+ model = YOLO('foduucom/plant-leaf-detection-and-classification')
104
+
105
  # set model parameters
106
+ model.overrides['conf'] = 0.25 # NMS confidence threshold
107
+ model.overrides['iou'] = 0.45 # NMS IoU threshold
108
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
109
+ model.overrides['max_det'] = 1000 # maximum number of detections per image
110
+
111
 
112
  # set image
113
+ image = 'path/to/your/image'
114
 
115
  # perform inference
116
+ results = model.predict(image)
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
+ # observe results
119
+ print(results[0].boxes)
120
+ render = render_result(model=model, image=image, result=results[0])
121
+ render.show()
122
  ```
123
 
124
  - Finetune the model on your custom dataset: