nehulagrawal
commited on
Commit
•
2166828
1
Parent(s):
68b78b9
Update README.md
Browse files
README.md
CHANGED
@@ -85,50 +85,40 @@ Users should be informed about the model's limitations and potential biases. Fur
|
|
85 |
|
86 |
Load model and perform prediction:
|
87 |
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
- Install [yolov5](https://github.com/fcakyon/yolov5-pip):
|
92 |
|
93 |
```bash
|
94 |
-
pip install
|
95 |
```
|
96 |
|
97 |
-
|
98 |
|
99 |
```python
|
100 |
-
import
|
101 |
|
102 |
# load model
|
103 |
-
model =
|
104 |
-
|
105 |
# set model parameters
|
106 |
-
model.conf = 0.25 # NMS confidence threshold
|
107 |
-
model.iou = 0.45 # NMS IoU threshold
|
108 |
-
model.
|
109 |
-
model.
|
110 |
-
|
111 |
|
112 |
# set image
|
113 |
-
|
114 |
|
115 |
# perform inference
|
116 |
-
results = model(
|
117 |
-
|
118 |
-
# inference with test time augmentation
|
119 |
-
results = model(img, augment=True)
|
120 |
-
|
121 |
-
# parse results
|
122 |
-
predictions = results.pred[0]
|
123 |
-
boxes = predictions[:, :4] # x1, y1, x2, y2
|
124 |
-
scores = predictions[:, 4]
|
125 |
-
categories = predictions[:, 5]
|
126 |
-
|
127 |
-
# show detection bounding boxes on image
|
128 |
-
results.show()
|
129 |
|
130 |
-
#
|
131 |
-
results.
|
|
|
|
|
132 |
```
|
133 |
|
134 |
- Finetune the model on your custom dataset:
|
|
|
85 |
|
86 |
Load model and perform prediction:
|
87 |
|
88 |
+
## How to Get Started with the Model
|
89 |
+
To get started with the YOLOv8s object Detection and Classification model, follow these steps:
|
90 |
|
91 |
+
1. Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus) and [ultralytics](https://github.com/ultralytics/ultralytics) libraries using pip:
|
|
|
|
|
92 |
|
93 |
```bash
|
94 |
+
pip install ultralyticsplus ultralytics
|
95 |
```
|
96 |
|
97 |
+
2. Load the model and perform prediction using the provided code snippet.
|
98 |
|
99 |
```python
|
100 |
+
from ultralyticsplus import YOLO, render_result
|
101 |
|
102 |
# load model
|
103 |
+
model = YOLO('foduucom/plant-leaf-detection-and-classification')
|
104 |
+
|
105 |
# set model parameters
|
106 |
+
model.overrides['conf'] = 0.25 # NMS confidence threshold
|
107 |
+
model.overrides['iou'] = 0.45 # NMS IoU threshold
|
108 |
+
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
109 |
+
model.overrides['max_det'] = 1000 # maximum number of detections per image
|
110 |
+
|
111 |
|
112 |
# set image
|
113 |
+
image = 'path/to/your/image'
|
114 |
|
115 |
# perform inference
|
116 |
+
results = model.predict(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# observe results
|
119 |
+
print(results[0].boxes)
|
120 |
+
render = render_result(model=model, image=image, result=results[0])
|
121 |
+
render.show()
|
122 |
```
|
123 |
|
124 |
- Finetune the model on your custom dataset:
|