nehulagrawal
commited on
Commit
·
37ad910
1
Parent(s):
65ee949
Update README.md
Browse files
README.md
CHANGED
@@ -90,14 +90,62 @@ Users should be informed about the model's limitations and potential biases. Fur
|
|
90 |
|
91 |
Load model and perform prediction:
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
```
|
|
|
|
|
|
|
|
|
94 |
import yolov5
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
|
99 |
|
100 |
-
|
101 |
|
102 |
#### Hardware
|
103 |
|
|
|
90 |
|
91 |
Load model and perform prediction:
|
92 |
|
93 |
+
|
94 |
+
### How to use
|
95 |
+
|
96 |
+
- Install [yolov5](https://github.com/fcakyon/yolov5-pip):
|
97 |
+
|
98 |
+
```bash
|
99 |
+
pip install -U yolov5
|
100 |
```
|
101 |
+
|
102 |
+
- Load model and perform prediction:
|
103 |
+
|
104 |
+
```python
|
105 |
import yolov5
|
106 |
|
107 |
+
# load model
|
108 |
+
model = yolov5.load('foduucom/object_distance_estimation')
|
109 |
+
|
110 |
+
# set model parameters
|
111 |
+
model.conf = 0.25 # NMS confidence threshold
|
112 |
+
model.iou = 0.45 # NMS IoU threshold
|
113 |
+
model.agnostic = False # NMS class-agnostic
|
114 |
+
model.multi_label = False # NMS multiple labels per box
|
115 |
+
model.max_det = 1000 # maximum number of detections per image
|
116 |
+
|
117 |
+
# set image
|
118 |
+
img = path
|
119 |
+
|
120 |
+
# perform inference
|
121 |
+
results = model(img, size=640)
|
122 |
+
|
123 |
+
# inference with test time augmentation
|
124 |
+
results = model(img, augment=True)
|
125 |
+
|
126 |
+
# parse results
|
127 |
+
predictions = results.pred[0]
|
128 |
+
boxes = predictions[:, :4] # x1, y1, x2, y2
|
129 |
+
scores = predictions[:, 4]
|
130 |
+
categories = predictions[:, 5]
|
131 |
+
|
132 |
+
# show detection bounding boxes on image
|
133 |
+
results.show()
|
134 |
+
|
135 |
+
# save results into "results/" folder
|
136 |
+
results.save(save_dir='results/')
|
137 |
+
```
|
138 |
+
|
139 |
+
- Finetune the model on your custom dataset:
|
140 |
+
|
141 |
+
```bash
|
142 |
+
yolov5 train --data dataset.yaml --img 640 --batch -1 --weights foduucom/object_distance_estimation --epochs 10
|
143 |
+
```
|
144 |
|
145 |
|
146 |
|
147 |
|
148 |
+
### Compute Infrastructure
|
149 |
|
150 |
#### Hardware
|
151 |
|