nehulagrawal commited on
Commit
37ad910
·
1 Parent(s): 65ee949

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -1
README.md CHANGED
@@ -90,14 +90,62 @@ Users should be informed about the model's limitations and potential biases. Fur
90
 
91
  Load model and perform prediction:
92
 
 
 
 
 
 
 
 
93
  ```
 
 
 
 
94
  import yolov5
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
 
98
 
99
 
100
- '''### Compute Infrastructure
101
 
102
  #### Hardware
103
 
 
90
 
91
  Load model and perform prediction:
92
 
93
+
94
+ ### How to use
95
+
96
+ - Install [yolov5](https://github.com/fcakyon/yolov5-pip):
97
+
98
+ ```bash
99
+ pip install -U yolov5
100
  ```
101
+
102
+ - Load model and perform prediction:
103
+
104
+ ```python
105
  import yolov5
106
 
107
+ # load model
108
+ model = yolov5.load('foduucom/object_distance_estimation')
109
+
110
+ # set model parameters
111
+ model.conf = 0.25 # NMS confidence threshold
112
+ model.iou = 0.45 # NMS IoU threshold
113
+ model.agnostic = False # NMS class-agnostic
114
+ model.multi_label = False # NMS multiple labels per box
115
+ model.max_det = 1000 # maximum number of detections per image
116
+
117
+ # set image
118
+ img = path
119
+
120
+ # perform inference
121
+ results = model(img, size=640)
122
+
123
+ # inference with test time augmentation
124
+ results = model(img, augment=True)
125
+
126
+ # parse results
127
+ predictions = results.pred[0]
128
+ boxes = predictions[:, :4] # x1, y1, x2, y2
129
+ scores = predictions[:, 4]
130
+ categories = predictions[:, 5]
131
+
132
+ # show detection bounding boxes on image
133
+ results.show()
134
+
135
+ # save results into "results/" folder
136
+ results.save(save_dir='results/')
137
+ ```
138
+
139
+ - Finetune the model on your custom dataset:
140
+
141
+ ```bash
142
+ yolov5 train --data dataset.yaml --img 640 --batch -1 --weights foduucom/object_distance_estimation --epochs 10
143
+ ```
144
 
145
 
146
 
147
 
148
+ ### Compute Infrastructure
149
 
150
  #### Hardware
151