Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load your model and tokenizer
|
6 |
+
model_name = "fohake/cert"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Define the prediction function
|
11 |
+
def predict(text):
|
12 |
+
inputs = tokenizer(text, return_tensors="pt")
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
logits = outputs.logits
|
16 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
17 |
+
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
18 |
+
confidence = probabilities[0][predicted_class].item()
|
19 |
+
return {"class": predicted_class, "confidence": confidence}
|
20 |
+
|
21 |
+
# Create the Gradio interface
|
22 |
+
iface = gr.Interface(
|
23 |
+
fn=predict,
|
24 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
|
25 |
+
outputs="json",
|
26 |
+
title="Text Classification with CERT",
|
27 |
+
description="Enter a piece of text to classify it using the CERT model."
|
28 |
+
)
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
iface.launch()
|