fonshartendorp
commited on
Commit
•
f73c1c6
1
Parent(s):
c47dee9
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- nl
|
4 |
+
tags:
|
5 |
+
- Biomedical entity linking
|
6 |
+
- sapBERT
|
7 |
+
- bioNLP
|
8 |
+
- embeddings
|
9 |
+
- representation learning
|
10 |
+
---
|
11 |
+
## Dutch Biomedical Entity Linking
|
12 |
+
|
13 |
+
### Summary
|
14 |
+
- RoBERTa-based basemodel that is trained from scratch on Dutch hospital notes ([medRoBERTa.nl](https://huggingface.co/CLTL/MedRoBERTa.nl)).
|
15 |
+
- 2nd-phase pretrained using [self-alignment](https://doi.org/10.48550/arXiv.2010.11784) on UMLS-derived Dutch biomedical ontology.
|
16 |
+
- fine-tuned on automatically generated weakly labelled corpus from Wikipedia.
|
17 |
+
- evaluation results on [Mantra GSC](https://doi.org/10.1093/jamia/ocv037) corpus can be found in the [report](https://github.com/fonshartendorp/dutch_biomedical_entity_linking/blob/main/report/report.pdf)
|
18 |
+
|
19 |
+
|
20 |
+
All code can be found on [github](https://github.com/fonshartendorp/dutch_biomedical_entity_linking).
|
21 |
+
|
22 |
+
### Usage
|
23 |
+
|
24 |
+
The following script (reused the original [sapBERT repository](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext?text=kidney)) computes the embeddings for a list of input entities (strings)
|
25 |
+
|
26 |
+
```
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from tqdm.auto import tqdm
|
30 |
+
from transformers import AutoTokenizer, AutoModel
|
31 |
+
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("fonshartendorp/dutch_biomedical_entity_linking)")
|
33 |
+
model = AutoModel.from_pretrained("fonshartendorp/dutch_biomedical_entity_linking").cuda()
|
34 |
+
|
35 |
+
# replace with your own list of entity names
|
36 |
+
dutch_biomedical_entities = ["versnelde ademhaling", "Coronavirus infectie", "aandachtstekort/hyperactiviteitstoornis", "hartaanval"]
|
37 |
+
|
38 |
+
bs = 128 # batch size during inference
|
39 |
+
all_embs = []
|
40 |
+
for i in tqdm(np.arange(0, len(dutch_biomedical_entities), bs)):
|
41 |
+
toks = tokenizer.batch_encode_plus(dutch_biomedical_entities[i:i+bs],
|
42 |
+
padding="max_length",
|
43 |
+
max_length=25,
|
44 |
+
truncation=True,
|
45 |
+
return_tensors="pt")
|
46 |
+
toks_cuda = {}
|
47 |
+
for k,v in toks.items():
|
48 |
+
toks_cuda[k] = v.cuda()
|
49 |
+
cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding
|
50 |
+
all_embs.append(cls_rep.cpu().detach().numpy())
|
51 |
+
|
52 |
+
all_embs = np.concatenate(all_embs, axis=0)
|
53 |
+
```
|
54 |
+
|
55 |
+
For (Dutch) biomedical entity linking, the following steps should be performed:
|
56 |
+
|
57 |
+
1. Request UMLS (and SNOMED NL) license
|
58 |
+
2. Precompute embeddings for all entities in the UMLS with the fine-tuned model
|
59 |
+
3. Compute embedding of the new, unseen mention with the fine-tuned model
|
60 |
+
4. Perform nearest-neighbour search (or search FAISS-index) for linking the embedding of the new mention to its most similar embedding from the UMLS
|