--- language: - nl tags: - Biomedical entity linking - sapBERT - bioNLP - embeddings - representation learning --- ## Dutch Biomedical Entity Linking ### Summary - RoBERTa-based basemodel that is trained from scratch on Dutch hospital notes ([medRoBERTa.nl](https://huggingface.co/CLTL/MedRoBERTa.nl)). - 2nd-phase pretrained using [self-alignment](https://doi.org/10.48550/arXiv.2010.11784) on UMLS-derived Dutch biomedical ontology. - fine-tuned on automatically generated weakly labelled corpus from Wikipedia. - evaluation results on [Mantra GSC](https://doi.org/10.1093/jamia/ocv037) corpus can be found in the [report](https://github.com/fonshartendorp/dutch_biomedical_entity_linking/blob/main/report/report.pdf) All code for generating the training data, training the model and evaluating it, can be found in the [github](https://github.com/fonshartendorp/dutch_biomedical_entity_linking) repository. ### Usage The following script (reused the original [sapBERT repository](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext?text=kidney)) computes the embeddings for a list of input entities (strings) ``` import numpy as np import torch from tqdm.auto import tqdm from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("fonshartendorp/dutch_biomedical_entity_linking)") model = AutoModel.from_pretrained("fonshartendorp/dutch_biomedical_entity_linking").cuda() # replace with your own list of entity names dutch_biomedical_entities = ["versnelde ademhaling", "Coronavirus infectie", "aandachtstekort/hyperactiviteitstoornis", "hartaanval"] bs = 128 # batch size during inference all_embs = [] for i in tqdm(np.arange(0, len(dutch_biomedical_entities), bs)): toks = tokenizer.batch_encode_plus(dutch_biomedical_entities[i:i+bs], padding="max_length", max_length=25, truncation=True, return_tensors="pt") toks_cuda = {} for k,v in toks.items(): toks_cuda[k] = v.cuda() cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding all_embs.append(cls_rep.cpu().detach().numpy()) all_embs = np.concatenate(all_embs, axis=0) ``` For (Dutch) biomedical entity linking, the following steps should be performed: 1. Request UMLS (and SNOMED NL) license 2. Precompute embeddings for all entities in the UMLS with the fine-tuned model 3. Compute embedding of the new, unseen mention with the fine-tuned model 4. Perform nearest-neighbour search (or search FAISS-index) for linking the embedding of the new mention to its most similar embedding from the UMLS