File size: 3,346 Bytes
f1e6821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
library_name: transformers
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: reverse_transcript_conv
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# reverse_transcript_conv

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2532

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: reduce_lr_on_plateau
- lr_scheduler_warmup_steps: 500
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 4.6781        | 0.0254 | 1000  | 4.4922          |
| 4.3077        | 0.0508 | 2000  | 4.1938          |
| 4.112         | 0.0762 | 3000  | 4.0437          |
| 4.0246        | 0.1016 | 4000  | 3.9360          |
| 3.9453        | 0.1270 | 5000  | 3.8491          |
| 3.8408        | 0.1524 | 6000  | 3.8078          |
| 3.8155        | 0.1778 | 7000  | 3.7247          |
| 3.7213        | 0.2032 | 8000  | 3.6968          |
| 3.7151        | 0.2286 | 9000  | 3.6513          |
| 3.7075        | 0.2540 | 10000 | 3.6007          |
| 3.5585        | 0.2794 | 11000 | 3.5847          |
| 3.6149        | 0.3047 | 12000 | 3.5467          |
| 3.5912        | 0.3301 | 13000 | 3.5183          |
| 3.4807        | 0.3555 | 14000 | 3.4998          |
| 3.5226        | 0.3809 | 15000 | 3.4750          |
| 3.498         | 0.4063 | 16000 | 3.4569          |
| 3.4416        | 0.4317 | 17000 | 3.4453          |
| 3.4828        | 0.4571 | 18000 | 3.4140          |
| 3.3674        | 0.4825 | 19000 | 3.4138          |
| 3.4523        | 0.5079 | 20000 | 3.3858          |
| 3.4875        | 0.5333 | 21000 | 3.3705          |
| 3.2789        | 0.5587 | 22000 | 3.3777          |
| 3.3742        | 0.5841 | 23000 | 3.3513          |
| 3.3978        | 0.6095 | 24000 | 3.3461          |
| 3.2839        | 0.6349 | 25000 | 3.3452          |
| 3.3467        | 0.6603 | 26000 | 3.3287          |
| 3.3192        | 0.6857 | 27000 | 3.3149          |
| 3.3158        | 0.7111 | 28000 | 3.3185          |
| 3.3437        | 0.7365 | 29000 | 3.2969          |
| 3.217         | 0.7619 | 30000 | 3.3135          |
| 3.2955        | 0.7873 | 31000 | 3.2879          |
| 3.3673        | 0.8127 | 32000 | 3.2781          |
| 3.166         | 0.8381 | 33000 | 3.2869          |
| 3.2655        | 0.8634 | 34000 | 3.2728          |
| 3.3123        | 0.8888 | 35000 | 3.2662          |
| 3.1935        | 0.9142 | 36000 | 3.2696          |
| 3.2581        | 0.9396 | 37000 | 3.2558          |
| 3.2193        | 0.9650 | 38000 | 3.2571          |
| 3.2243        | 0.9904 | 39000 | 3.2532          |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1