File size: 2,972 Bytes
f07425a
 
 
 
 
 
 
 
 
 
 
 
 
 
844ccbe
f07425a
 
 
 
 
844ccbe
f07425a
 
844ccbe
f07425a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
844ccbe
f07425a
844ccbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f07425a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
tags:
- contrastive learning
- CLAP
- audio classification
- zero-shot classification
---

# tinyCLAP: Distilling Contrastive Language-Audio Pretrained models

[![arXiv](https://img.shields.io/badge/arXiv-1234.56789-b31b1b.svg)](https://arxiv.org/abs/2311.14517)

This repository contains the official implementation of [tinyCLAP](https://arxiv.org/abs/2311.14517).
To access the project website, using [this link](https://francescopaissan.it/tinyclapweb/).

![tinyCLAP overview](https://francescopaissan.it/tinyclapweb/assets/overview.png)

## Requirements

To clone the repo and install requirements:

```setup
git clone https://github.com/fpaissan/tinyCLAP & cd tinyCLAP
pip install -r extra_requirements.txt
```

## Training

To train the model(s) in the paper, run this command:

```bash
MODEL_NAME=phinet_alpha_1.50_beta_0.75_t0_6_N_7

./run_tinyCLAP.sh $MODEL_NAME
```

Note that `MODEL_NAME` is formatted such that the script will automatically parse the configuration for the student model.
You can change parameters by changing the model name.

Please note:
- To use the original CLAP encoder in the distillation setting, replace the model name with `Cnn14`;
- To reproduce the variants of PhiNet from the manuscript, refer to the hyperparameters listed in Table 1.

## Evaluation

The command to evaluate the model on each dataset varies slightly among datasets.
Below are listed all the necessary commands.

### ESC50

```bash
python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --esc_folder $PATH_TO_ESC
```

### UrbanSound8K

```bash
python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --us8k_folder $PATH_TO_US8K
```

### TUT17

```bash
python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17
```

## Pre-trained Models

You can download pretrained models from the [tinyCLAP HF](https://huggingface.co/fpaissan/tinyCLAP).

_Note_:  The checkpoints on HF contain the entire CLAP module (complete of text encoder and teacher encoder).

To run inference using the pretrained models, please use:

```bash
python train_clap.py --pretrained_clap fpaissan/tinyCLAP/$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17
```

This command will automatically download the checkpoint, if present in the zoo of pretrained models. Make sure to change the dataset configuration file based on the evaluation.

A list of available models with their computational cost is described in the follwing table:

| alpha | beta | t0 | N | Params [M] | ESC-50 | UrbanSound8K | TUT17 |
|:-----:|:----:|:--:|:-:|:----------:|:------:|:------------:|:-----:|
|  1.5  | 0.75 |  6 | 7 |     4.4    |      |          |   |

## Citing tinyCLAP

```
@inproceedings{paissan2024tinyclap,
  title={tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models},
  author={Paissan, Francesco and Farella, Elisabetta},
  journal={Interspeech 2024},
  year={2024}
}
```