--- license: apache-2.0 tags: - contrastive learning - CLAP - audio classification - zero-shot classification --- # tinyCLAP: Distilling Contrastive Language-Audio Pretrained models [![arXiv](https://img.shields.io/badge/arXiv-1234.56789-b31b1b.svg)](https://arxiv.org/abs/2311.14517) This repository contains the official implementation of [tinyCLAP](https://arxiv.org/abs/2311.14517). To access the project website, using [this link](https://francescopaissan.it/tinyclapweb/). ![tinyCLAP overview](https://francescopaissan.it/tinyclapweb/assets/overview.png) ## Requirements To clone the repo and install requirements: ```setup git clone https://github.com/fpaissan/tinyCLAP & cd tinyCLAP pip install -r extra_requirements.txt ``` ## Training To train the model(s) in the paper, run this command: ```bash MODEL_NAME=phinet_alpha_1.50_beta_0.75_t0_6_N_7 ./run_tinyCLAP.sh $MODEL_NAME ``` Note that `MODEL_NAME` is formatted such that the script will automatically parse the configuration for the student model. You can change parameters by changing the model name. Please note: - To use the original CLAP encoder in the distillation setting, replace the model name with `Cnn14`; - To reproduce the variants of PhiNet from the manuscript, refer to the hyperparameters listed in Table 1. ## Evaluation The command to evaluate the model on each dataset varies slightly among datasets. Below are listed all the necessary commands. ### ESC50 ```bash python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --esc_folder $PATH_TO_ESC ``` ### UrbanSound8K ```bash python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --us8k_folder $PATH_TO_US8K ``` ### TUT17 ```bash python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17 ``` ## Pre-trained Models You can download pretrained models from the [tinyCLAP HF](https://huggingface.co/fpaissan/tinyCLAP). _Note_: The checkpoints on HF contain the entire CLAP module (complete of text encoder and teacher encoder). To run inference using the pretrained models, please use: ```bash python train_clap.py --pretrained_clap fpaissan/tinyCLAP/$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17 ``` This command will automatically download the checkpoint, if present in the zoo of pretrained models. Make sure to change the dataset configuration file based on the evaluation. A list of available models with their computational cost is described in the follwing table: | alpha | beta | t0 | N | Params [M] | ESC-50 | UrbanSound8K | TUT17 | |:-----:|:----:|:--:|:-:|:----------:|:------:|:------------:|:-----:| | 1.5 | 0.75 | 6 | 7 | 4.4 | | | | ## Citing tinyCLAP ``` @inproceedings{paissan2024tinyclap, title={tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models}, author={Paissan, Francesco and Farella, Elisabetta}, journal={Interspeech 2024}, year={2024} } ```