--- license: apache-2.0 tags: - contrastive learning - CLAP - audio classification - zero-shot classification --- # tinyCLAP: Distilling Contrastive Language-Audio Pretrained models [![arXiv](https://img.shields.io/badge/arXiv-1234.56789-b31b1b.svg)](https://arxiv.org/abs/2311.14517) This repository contains the official implementation of [tinyCLAP](https://arxiv.org/abs/2311.14517). To access the project website, using [this link](https://francescopaissan.it/tinyclapweb/). ![tinyCLAP overview](https://francescopaissan.it/tinyclapweb/assets/overview.png) ## Requirements To clone the repo and install requirements: ```setup git clone https://github.com/fpaissan/tinyCLAP & cd tinyCLAP pip install -r extra_requirements.txt ``` ## Training To train the model(s) in the paper, run this command: ```bash MODEL_NAME=phinet_alpha_1.50_beta_0.75_t0_6_N_7 ./run_tinyCLAP.sh $MODEL_NAME ``` Note that `MODEL_NAME` is formatted such that the script will automatically parse the configuration for the student model. You can change parameters by changing the model name. Please note: - To use the original CLAP encoder in the distillation setting, replace the model name with `Cnn14`; - To reproduce the variants of PhiNet from the manuscript, refer to the hyperparameters listed in Table 1. ## Evaluation The command to evaluate the model on each dataset varies slightly among datasets. Below are listed all the necessary commands. ### ESC50 ```bash python train_clap.py hparams/distill_clap.yaml --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --esc_folder $PATH_TO_ESC ``` ### UrbanSound8K ```bash python train_clap.py hparams/distill_clap.yaml --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --us8k_folder $PATH_TO_US8K ``` ### TUT17 ```bash python train_clap.py hparams/distill_clap.yaml --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17 ``` ## Pre-trained Models You can download pretrained models from the [tinyCLAP HF](https://huggingface.co/fpaissan/tinyCLAP). _Note_: The checkpoints on HF contain the entire CLAP module (complete of text encoder and teacher encoder). To run inference using the pretrained models, please use: ```bash python train_clap.py hparams/distill_clap.yaml --pretrained_clap fpaissan/tinyCLAP/$MODEL_NAME.ckpt --zs_eval True --tut17_folder $PATH_TO_TUT17 ``` This command will automatically download the checkpoint, if present in the zoo of pretrained models. Make sure to change the dataset configuration file based on the evaluation. A list of available models with their computational cost is described in the follwing table: | audioenc_name_student | Params [M] | ESC-50 | UrbanSound8K | TUT17 | |:-----:|:----------:|:------:|:------------:|:-----:| | Cnn14 | 82.8 | 81.3% | 72.3% | 23.7% | | phinet_alpha_1.50_beta_0.75_t0_6_N_7 | 4.4 | 77.3% | 69.7% | 21.9% | **Note**: I am currently computing the confidence intervals for these results. Due to seed variability and CUDA version mismatch, the numbers might be slightly different from those reported in the paper. The original paper's checkpoints are available through [this link](https://www.dropbox.com/scl/fi/e3aj76vxwlb4w6hs3mclv/tinyCLAP_results.zip?rlkey=7fl426tz1vf686oyosvja8i9s&dl=0). ## Citing tinyCLAP ``` @inproceedings{paissan2024tinyclap, title={tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models}, author={Paissan, Francesco and Farella, Elisabetta}, journal={Interspeech 2024}, year={2024} } ```