fracapuano
commited on
Add EEGViT model
Browse files- config.json +25 -0
- eegvit_model.py +48 -0
- model.safetensors +3 -0
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"EEGViTAutoModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoModel": "eegvit_model.EEGViTAutoModel"
|
8 |
+
},
|
9 |
+
"encoder_stride": 16,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.0,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"image_size": 224,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-12,
|
17 |
+
"model_type": "vit",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_channels": 3,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"patch_size": 16,
|
22 |
+
"qkv_bias": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.46.1"
|
25 |
+
}
|
eegvit_model.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
from transformers import ViTModel
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import transformers
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
|
9 |
+
class EEGViTAutoModel(PreTrainedModel):
|
10 |
+
config_class = transformers.ViTConfig
|
11 |
+
|
12 |
+
def __init__(self, config=None):
|
13 |
+
if config is None:
|
14 |
+
config = transformers.ViTConfig()
|
15 |
+
super().__init__(config)
|
16 |
+
self.model = EEGViT_pretrained()
|
17 |
+
|
18 |
+
class EEGViT_pretrained(nn.Module):
|
19 |
+
def __init__(self):
|
20 |
+
super().__init__()
|
21 |
+
self.conv1 = nn.Conv2d(
|
22 |
+
in_channels=1,
|
23 |
+
out_channels=256,
|
24 |
+
kernel_size=(1, 36),
|
25 |
+
stride=(1, 36),
|
26 |
+
padding=(0,2),
|
27 |
+
bias=False
|
28 |
+
)
|
29 |
+
self.batchnorm1 = nn.BatchNorm2d(256, False)
|
30 |
+
model_name = "google/vit-base-patch16-224"
|
31 |
+
config = transformers.ViTConfig.from_pretrained(model_name)
|
32 |
+
config.update({'num_channels': 256})
|
33 |
+
config.update({'image_size': (129,14)})
|
34 |
+
config.update({'patch_size': (8,1)})
|
35 |
+
|
36 |
+
model = transformers.ViTForImageClassification.from_pretrained(model_name, config=config, ignore_mismatched_sizes=True)
|
37 |
+
model.vit.embeddings.patch_embeddings.projection = torch.nn.Conv2d(256, 768, kernel_size=(8, 1), stride=(8, 1), padding=(0,0), groups=256)
|
38 |
+
model.classifier=torch.nn.Sequential(torch.nn.Linear(768,1000,bias=True),
|
39 |
+
torch.nn.Dropout(p=0.1),
|
40 |
+
torch.nn.Linear(1000,2,bias=True))
|
41 |
+
self.ViT = model
|
42 |
+
|
43 |
+
def forward(self,x):
|
44 |
+
x=self.conv1(x)
|
45 |
+
x=self.batchnorm1(x)
|
46 |
+
x=self.ViT.forward(x).logits
|
47 |
+
|
48 |
+
return x
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7147906aa1f15600d12f0799c6cf0117ffc407c017d74817977eaff9c04ad91e
|
3 |
+
size 344096872
|