--- base_model: meta-llama/Meta-Llama-3-8B datasets: - generator library_name: peft license: llama3 tags: - trl - sft - generated_from_trainer model-index: - name: NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata results: [] --- # NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 2.4725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5114 | 0.0164 | 100 | 2.4076 | | 2.4269 | 0.0327 | 200 | 2.4570 | | 2.4619 | 0.0491 | 300 | 2.4668 | | 2.4684 | 0.0654 | 400 | 2.4725 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1