freds0 commited on
Commit
aeb215c
1 Parent(s): 9d31bcd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -4
README.md CHANGED
@@ -36,17 +36,30 @@ You can use the model with the Transformers library:
36
  from transformers import WhisperForConditionalGeneration, WhisperProcessor
37
 
38
  ```python
 
 
 
 
 
 
 
39
  processor = WhisperProcessor.from_pretrained("freds0/distil-whisper-large-v3-ptbr")
40
  model = WhisperForConditionalGeneration.from_pretrained("freds0/distil-whisper-large-v3-ptbr")
41
 
42
- # Load audio and process
43
- audio_input = ... # your audio here
44
- input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features
 
 
 
 
 
 
45
 
46
  # Generate transcription
47
  predicted_ids = model.generate(input_features)
48
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
49
- print(transcription[0])
50
  ```
51
 
52
 
 
36
  from transformers import WhisperForConditionalGeneration, WhisperProcessor
37
 
38
  ```python
39
+ from datasets import load_dataset
40
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
41
+
42
+ # Load the validation split of the Common Voice dataset for Portuguese
43
+ common_voice = load_dataset("mozilla-foundation/common_voice_11_0", "pt", split="validation")
44
+
45
+ # Load the pretrained model and processor
46
  processor = WhisperProcessor.from_pretrained("freds0/distil-whisper-large-v3-ptbr")
47
  model = WhisperForConditionalGeneration.from_pretrained("freds0/distil-whisper-large-v3-ptbr")
48
 
49
+ # Select a sample from the dataset
50
+ sample = common_voice[0] # You can change the index to select a different sample
51
+
52
+ # Get the audio array and sampling rate
53
+ audio_input = sample["audio"]["array"]
54
+ sampling_rate = sample["audio"]["sampling_rate"]
55
+
56
+ # Preprocess the audio
57
+ input_features = processor(audio_input, sampling_rate=sampling_rate, return_tensors="pt").input_features
58
 
59
  # Generate transcription
60
  predicted_ids = model.generate(input_features)
61
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
62
+ print("Transcription:", transcription[0])
63
  ```
64
 
65