freethenation
commited on
Commit
•
e1d6729
1
Parent(s):
c0f068f
add finetune script for ref
Browse files- finetune_bert.py +88 -0
finetune_bert.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
dataset = load_dataset("json", data_files={"train":"tense_train.json", "validation":"tense_validation.json"})
|
5 |
+
|
6 |
+
labels = ['first', 'second', 'third']
|
7 |
+
id2label = {idx:label for idx, label in enumerate(labels)}
|
8 |
+
label2id = {label:idx for idx, label in enumerate(labels)}
|
9 |
+
|
10 |
+
from transformers import AutoModelForSequenceClassification
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased",
|
12 |
+
problem_type="multi_label_classification",
|
13 |
+
num_labels=len(labels),
|
14 |
+
id2label=id2label,
|
15 |
+
label2id=label2id)
|
16 |
+
|
17 |
+
batch_size = 8
|
18 |
+
metric_name = "f1"
|
19 |
+
|
20 |
+
from transformers import TrainingArguments, Trainer
|
21 |
+
args = TrainingArguments(
|
22 |
+
f"bert-finetuned-sem_eval-english",
|
23 |
+
evaluation_strategy = "epoch",
|
24 |
+
save_strategy = "epoch",
|
25 |
+
learning_rate=2e-5,
|
26 |
+
per_device_train_batch_size=batch_size,
|
27 |
+
per_device_eval_batch_size=batch_size,
|
28 |
+
num_train_epochs=5,
|
29 |
+
weight_decay=0.01,
|
30 |
+
load_best_model_at_end=True,
|
31 |
+
metric_for_best_model=metric_name,
|
32 |
+
#push_to_hub=True,
|
33 |
+
)
|
34 |
+
|
35 |
+
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score
|
36 |
+
from transformers import EvalPrediction, AutoTokenizer
|
37 |
+
import torch
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
40 |
+
|
41 |
+
# source: https://jesusleal.io/2021/04/21/Longformer-multilabel-classification/
|
42 |
+
def multi_label_metrics(predictions, labels, threshold=0.5):
|
43 |
+
# first, apply sigmoid on predictions which are of shape (batch_size, num_labels)
|
44 |
+
sigmoid = torch.nn.Sigmoid()
|
45 |
+
probs = sigmoid(torch.Tensor(predictions))
|
46 |
+
# next, use threshold to turn them into integer predictions
|
47 |
+
y_pred = np.zeros(probs.shape)
|
48 |
+
y_pred[np.where(probs >= threshold)] = 1
|
49 |
+
# finally, compute metrics
|
50 |
+
y_true = labels
|
51 |
+
f1_micro_average = f1_score(y_true=y_true, y_pred=y_pred, average='micro')
|
52 |
+
roc_auc = roc_auc_score(y_true, y_pred, average = 'micro')
|
53 |
+
accuracy = accuracy_score(y_true, y_pred)
|
54 |
+
# return as dictionary
|
55 |
+
metrics = {'f1': f1_micro_average,
|
56 |
+
'roc_auc': roc_auc,
|
57 |
+
'accuracy': accuracy}
|
58 |
+
return metrics
|
59 |
+
|
60 |
+
def compute_metrics(p: EvalPrediction):
|
61 |
+
preds = p.predictions[0] if isinstance(p.predictions,
|
62 |
+
tuple) else p.predictions
|
63 |
+
result = multi_label_metrics(
|
64 |
+
predictions=preds,
|
65 |
+
labels=p.label_ids)
|
66 |
+
return result
|
67 |
+
|
68 |
+
def preprocess_data(ex):
|
69 |
+
encoding = tokenizer(ex["text"], padding="max_length", truncation=True, max_length=128)
|
70 |
+
encoding['labels'] = [float(ex['pov']=="first"), float(ex['pov']=="second"), float(ex['pov']=="third")]
|
71 |
+
return encoding
|
72 |
+
|
73 |
+
dataset = dataset.filter(lambda ex: ex['pov'] != "unknown", num_proc=8)
|
74 |
+
encoded_dataset = dataset.map(preprocess_data, remove_columns=dataset['train'].column_names, num_proc=8)
|
75 |
+
|
76 |
+
trainer = Trainer(
|
77 |
+
model,
|
78 |
+
args,
|
79 |
+
train_dataset=encoded_dataset["train"],
|
80 |
+
eval_dataset=encoded_dataset["validation"],
|
81 |
+
tokenizer=tokenizer,
|
82 |
+
compute_metrics=compute_metrics
|
83 |
+
)
|
84 |
+
|
85 |
+
trainer.train()
|
86 |
+
trainer.save_model('bert-base-uncased-tense')
|
87 |
+
|
88 |
+
print(trainer.evaluate())
|