--- library_name: transformers license: mit base_model: openai-community/gpt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: clm-gpt2 results: [] --- # clm-gpt2 This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5054 - Accuracy: 0.6325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 2.4536 | 0.1302 | 500 | 2.1316 | 0.4955 | | 2.1054 | 0.2603 | 1000 | 2.0124 | 0.5221 | | 1.9756 | 0.3905 | 1500 | 1.9025 | 0.5453 | | 1.8863 | 0.5206 | 2000 | 1.8367 | 0.5601 | | 1.8283 | 0.6508 | 2500 | 1.7927 | 0.5686 | | 1.7893 | 0.7809 | 3000 | 1.7585 | 0.5760 | | 1.7555 | 0.9111 | 3500 | 1.7328 | 0.5815 | | 1.7143 | 1.0413 | 4000 | 1.7016 | 0.5882 | | 1.6697 | 1.1714 | 4500 | 1.6813 | 0.5930 | | 1.6584 | 1.3016 | 5000 | 1.6615 | 0.5972 | | 1.6438 | 1.4317 | 5500 | 1.6422 | 0.6009 | | 1.6184 | 1.5619 | 6000 | 1.6236 | 0.6049 | | 1.6086 | 1.6920 | 6500 | 1.6102 | 0.6082 | | 1.5882 | 1.8222 | 7000 | 1.5938 | 0.6114 | | 1.5719 | 1.9524 | 7500 | 1.5786 | 0.6148 | | 1.5272 | 2.0825 | 8000 | 1.5718 | 0.6175 | | 1.4971 | 2.2127 | 8500 | 1.5593 | 0.6204 | | 1.4893 | 2.3428 | 9000 | 1.5475 | 0.6227 | | 1.4808 | 2.4730 | 9500 | 1.5382 | 0.6251 | | 1.4689 | 2.6031 | 10000 | 1.5274 | 0.6275 | | 1.4572 | 2.7333 | 10500 | 1.5169 | 0.6298 | | 1.4488 | 2.8635 | 11000 | 1.5106 | 0.6315 | | 1.4465 | 2.9936 | 11500 | 1.5054 | 0.6325 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1