GGUF
Inference Endpoints
conversational
File size: 17,789 Bytes
b479575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
---
base_model:
- GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct
language:
- en
- id
- jv
- su
license: llama3
---

# Llama3 8B CPT Sahabat-AI v1 Instruct

**Sahabat-AI** (Indonesian language for “close friends”) is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian language and its various dialects. Sahabat-AI ecosystem is co-initiated by Indonesian tech and telecommunication companies:  GoTo Group and Indosat Ooredoo Hutchison.

Llama3 8B CPT Sahabat-AI v1 Instruct is an Indonesian-focused model which has been fine-tuned with around **448,000 Indonesian instruction-completion pairs** alongside an Indonesian-dialect pool consisting of **96,000 instruction-completion pairs in Javanese** and **98,000 instruction-completion pairs in Sundanese**. Additionally, we added a pool of **129,000 instruction-completion pairs in English**.

- **Co-initiated by:**  PT GoTo Gojek Tokopedia Tbk, Indosat Ooredoo Hutchison
- **Developed by:** PT GoTo Gojek Tokopedia Tbk,  AI Singapore
- **Model type:** Decoder
- **Languages:** English, Indonesian, Javanese, Sundanese
- **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)

## Model Details

### Model Description
We performed instruction tuning in Indonesian, Javanese, Sundanese as well as English on our [continued pre-trained Llama3 8B CPT Sahabat-AI v1 base](https://huggingface.co/GoToCompany/llama3-8b-cpt-sahabatai-v1-base), a decoder model using the Llama3 architecture, to create Llama3 8B CPT Sahabat-AI v1 Instruct.

For tokenisation, the model employs the default tokenizer used in Llama-3-8B. The model has a context length of 8192.

### Benchmark Performance
We evaluated Llama3 8B CPT Sahabat-AI V1 Instruct on both general language capabilities and instruction-following capabilities.

#### General Language Capabilities
For the evaluation of general language capabilities, we employed the 
- [SEA HELM (also known as BHASA) evaluation benchmark](https://arxiv.org/abs/2309.06085v2) across a variety of tasks.
  - These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng), Abstractive Summarization (Summ), Causal Reasoning (Causal) and Natural Language Inference (NLI).
  - We also added support for Javanese and Sundanese for the BHASA tasks whenever applicable
- [IndoMMLU](https://arxiv.org/pdf/2310.04928)
  - These tasks include examination questions on Humanities, Indonesian language, Local languages and cultures, Social science and STEM across primary, middle, and high school levels.
- and the common English tasks from the [HuggingFace LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard).
  - These tasks consist of [IFEval, BBH, Math Lvl 5, GPQA, MuSR, and MMLU-PRO.](https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about)
  - **Caveat**: Our results differ from the HuggingFace LLM Leaderboard because we have used [VLLM](https://docs.vllm.ai/en/latest/) as our inference platform. VLLM caps the context size at **4096 tokens** while HuggingFace was set to **8192 tokens**.

Note: SEA HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.

The evaluation was done **zero-shot** with native prompts on a sample of 100-1000 instances for each dataset.


#### Instruction-following Capabilities
Since Llama3 8B CPT Sahabat-AI v1 Instruct is an instruction-following model, we also evaluated it on instruction-following capabilities with the [IFEval](https://arxiv.org/abs/2311.07911) dataset.

  As this dataset was in English, the linguists and native speakers in the team worked together to filter, localize and translate the dataset into the respective target languages to ensure that the examples remained reasonable, meaningful and natural.

**IFEval**

IFEval evaluates a model's ability to adhere to constraints provided in the prompt, for example beginning a response with a specific word/phrase or answering with a certain number of sections. Additionally, accuracy is normalized by the proportion of responses in the correct language (if the model performs the task correctly but responds in the wrong language, it is judged to have failed the task).

*Note*: IFEval was only used on Bahasa Indonesia. We are currently working on adding it for Javanese and Sundanese for our upcoming releases.

#### Results

#### Indonesian Results

#### SEA HELM (also known as BHASA)
<table style="border-collapse: collapse; width: 100%; font-size: 10px">
  <tr>
    <th style="border: 2px solid black; padding: 8px; font-weight: bold;">Language / Model Name [Instruct]</th>
    <th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
    <th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
    <th style="border: 1px solid gray; padding: 8px;">Llama-3-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
    <th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
  </tr>
  <tr>
    <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Overall (Bahasa Indonesia + Javanese + Sundanese)</td>
    <td style="border: 1px solid gray; padding: 8px;">36.963</td>
    <td style="border: 1px solid gray; padding: 8px;">42.988</td>
    <td style="border: 1px solid gray; padding: 8px;">37.805</td>
    <td style="border: 1px solid gray; padding: 8px;">45.866</td>
    <td style="border: 1px solid gray; padding: 8px;">46.880</td>
    <td style="border: 1px solid gray; padding: 8px;">56.359</td>
    <td style="border: 2px solid black; padding: 8px;">53.725</td>
    <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">61.169</td>
  </tr>
  <tr>
    <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Bahasa Indonesia</td>
    <td style="border: 1px solid gray; padding: 8px;">46.760</td>
    <td style="border: 1px solid gray; padding: 8px;">60.372</td>
    <td style="border: 1px solid gray; padding: 8px;">42.022</td>
    <td style="border: 1px solid gray; padding: 8px;">51.944</td>
    <td style="border: 1px solid gray; padding: 8px;">54.579</td>
    <td style="border: 1px solid gray; padding: 8px;">63.394</td>
    <td style="border: 2px solid black; padding: 8px;">57.221</td>
    <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">64.154</td>
  </tr>
  <tr>
    <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Javanese</td>
    <td style="border: 1px solid gray; padding: 8px;">33.956</td>
    <td style="border: 1px solid gray; padding: 8px;">40.625</td>
    <td style="border: 1px solid gray; padding: 8px;">41.739</td>
    <td style="border: 1px solid gray; padding: 8px;">47.587</td>
    <td style="border: 1px solid gray; padding: 8px;">48.012</td>
    <td style="border: 1px solid gray; padding: 8px;">56.468</td>
    <td style="border: 2px solid black; padding: 8px;">56.460</td>
    <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">64.439</td>
  </tr>
  <tr>
    <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Sundanese</td>
    <td style="border: 1px solid gray; padding: 8px;">30.173</td>
    <td style="border: 1px solid gray; padding: 8px;">27.969</td>
    <td style="border: 1px solid gray; padding: 8px;">29.654</td>
    <td style="border: 1px solid gray; padding: 8px;">38.068</td>
    <td style="border: 1px solid gray; padding: 8px;">38.050</td>
    <td style="border: 1px solid gray; padding: 8px;">49.216</td>
    <td style="border: 2px solid black; padding: 8px;">47.495</td>
    <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">54.913</td>
  </tr>
</table>

#### IndoMMLU
<table style="border-collapse: collapse; width: 100%; font-size: 10px">
  <tr>
    <th style="border: 2px solid black; padding: 8px; font-weight: bold;">Model Name [Instruct]</th>
    <th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
    <th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
    <th style="border: 1px solid gray; padding: 8px;">Meta-Llama-3-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
    <th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
  </tr>
  <tr>
    <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Overall Results</td>
    <td style="border: 1px solid gray; padding: 8px;">53.0%</td>
    <td style="border: 1px solid gray; padding: 8px;">56.0%</td>
    <td style="border: 1px solid gray; padding: 8px;">51.9%</td>
    <td style="border: 1px solid gray; padding: 8px;">53.8%</td>
    <td style="border: 1px solid gray; padding: 8px;">54.4%</td>
    <td style="border: 1px solid gray; padding: 8px;">61.4%</td>
    <td style="border: 2px solid black; padding: 8px;">55.6%</td>
    <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">62.6%</td>
  </tr>
</table>

#### English Results
<table style="border-collapse: collapse; width: 100%; font-size: 10px">
  <tr>
    <th style="border: 2px solid black; padding: 8px;">Model Name [Instruct]</th>
    <th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
    <th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
    <th style="border: 1px solid gray; padding: 8px;">Llama-3-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
    <th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
    <th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
  </tr>
  <tr>
    <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Average</td>
    <td style="border: 1px solid gray; padding: 8px;">24.48</td>
    <td style="border: 1px solid gray; padding: 8px;">27.75</td>
    <td style="border: 1px solid gray; padding: 8px;">23.91</td>
    <td style="border: 1px solid gray; padding: 8px;">27.98</td>
    <td style="border: 1px solid gray; padding: 8px;">24.52</td>
    <td style="border: 1px solid gray; padding: 8px;">26.44</td>
    <td style="border: 2px solid black; padding: 8px;">24.43</td>
    <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">33.67</td>
  </tr>
</table>


Llama3 8B CPT Sahabat-AI v1 Instruct can be run using the 🤗 Transformers library 
```python
# Please use transformers==4.45.0

import torch
import transformers

model_id = "GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

# Javanese
messages = [
   {"role": "system", "content": "You are a helpful assistant"},
   {"role": "user", "content": "Sopo wae sing ana ing Punakawan?"}
]

outputs = pipeline(
    messages,
    max_new_tokens=256,
    eos_token_id=terminators,
)
print(outputs[0]["generated_text"][-1])


# Sundanese
messages = [
    {"role": "system", "content": "You are a helpful assistant"},
    {"role": "user", "content": "Kumaha caritana si Kabayan?"},
]

outputs = pipeline(
    messages,
    max_new_tokens=256,
    eos_token_id=terminators,
)
print(outputs[0]["generated_text"][-1])
```

### Caveats
It is important for users to be aware that our model exhibits certain limitations that warrant consideration. Like many LLMs, the model can hallucinate and occasionally generates irrelevant content, introducing fictional elements that are not grounded in the provided context. Users should also exercise caution in interpreting and validating the model's responses due to the potential inconsistencies in its reasoning.

## Limitations
### Safety

Current Sahabat-AI models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.

## Technical Specifications
### Fine-Tuning Details
Llama3 8B CPT Sahabat-AI v1 Instruct was built using a combination of a full parameter fine-tune, on-policy alignment, and model merges of the best performing checkpoints. The training process for fine-tuning was approximately 4 hours, with alignment taking 2 hours, both on 8x H100-80GB GPUs.

## Data
Llama3 8B CPT Sahabat-AI v1 Instruct was trained on a wide range of synthetic instructions, alongside publicly available instructions hand-curated by the team with the assistance of native speakers. In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source. 

## Call for Collaboration 
Sahabat-AI (Indonesian language for “close friends”) a **local open source Large Language Model (LLM) ecosystem in Indonesian language**, co-initiated by Indonesian tech and telecommunication companies:  GoTo Group and Indosat Ooredoo Hutchison. 
Sahabat-AI ecosystem aims to empower Indonesians who want to develop AI-based services and applications using Bahasa Indonesia and its various local dialects. 

We are supported by research centers and global tech experts such as AI Singapore and Tech Mahendra to train the model to gain general language understanding.

We also collaborate with key top Indonesia universities such as University of Indonesia, Gadjah Mada University, Bogor Institute of Agriculture, Bandung Institute of Technology, including top Indonesia media groups, such as Kompas Gramedia Group and Republika to train and enrich the model in Bahasa Indonesia, ensuring optimum provision of local context and cultural relevance.

We would like to invite **researchers, developers, and language enthusiasts** to actively contribute to the enhancement and expansion of Sahabat-AI. 
Your collaborations can involve:
- Identifying and reporting technical issues
- Sharing pre-training, instruction, and preference data
- Improving documentation usability
- Proposing and implementing new model evaluation tasks and metrics 

Join us in shaping the future of Sahabat-AI by sharing your expertise and insights to make these models more accessible, accurate, and versatile.

You can contribute your ideas through [this form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)

## The Development Team (in ascending alphabetical order)

### AI Singapore
Chan Adwin<br>
Cheng Nicholas<br>
Choa Esther<br>
Huang Yuli<br>
Lau Wayne<br>
Lee Chwan Ren<br>
Leong Wai Yi<br>
Leong Wei Qi<br>
Limkonchotiwat Peerat<br>
Liu Bing Jie Darius<br>
Montalan Jann Railey<br>
Ng Boon Cheong Raymond<br>
Ngui Jian Gang<br>
Nguyen Thanh Ngan<br>
Ong Brandon<br>
Ong Tat-Wee David<br>
Ong Zhi Hao<br>
Rengarajan Hamsawardhini<br>
Siow Bryan<br>
Susanto Yosephine<br>
Tai Ngee Chia<br>
Tan Choon Meng<br>
Teng Walter<br>
Teo Eng Sipp Leslie<br>
Teo Wei Yi<br>
Tjhi William<br>
Yeo Yeow Tong<br>
Yong Xianbin<br>

### PT GoTo Gojek Tokopedia Tbk
Anissa Dininta<br>
Chau Shiau Ching<br>
Choiri Hendra Hadhil<br>
Goel Priyank<br>
Saini Ajay Kumar<br>
Shalev Ofir<br>
Tan Daryl<br>
Tep Kilian Rithi<br>
Tiwari Anupam<br>
Widjojo Daniel<br>

## Acknowledgements

 [AI Singapore](​​https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore. 

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.


## Contact

For more info, please contact us using this [Sahabat-AI Inquiry Form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)

## Disclaimer

This is the repository for the Instruct model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.


## References
### IndoMMLU Reference

```bibtex
@inproceedings{koto-etal-2023-indommlu,
    title = "Large Language Models Only Pass Primary School Exams in {I}ndonesia: A Comprehensive Test on {I}ndo{MMLU}",
    author = "Fajri Koto and Nurul Aisyah and Haonan Li and Timothy Baldwin",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = December,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
}
}
```