File size: 2,563 Bytes
3979e75
 
 
 
 
 
 
542335a
3979e75
 
 
 
 
 
 
 
 
542335a
 
3979e75
 
 
 
 
 
542335a
3979e75
 
 
 
 
 
 
542335a
3979e75
542335a
 
3979e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---

library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- fsicoli/common_voice_18_0
metrics:
- wer
model-index:
- name: whisper-large-v3-pt-3000h-4
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fsicoli/common_voice_18_0 pt
      type: fsicoli/common_voice_18_0
      config: pt
      split: None
      args: pt
    metrics:
    - name: Wer
      type: wer
      value: 0.10807174887892376
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-pt-3000h-4

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fsicoli/common_voice_18_0 pt dataset.

It achieves the following results on the evaluation set:

- Loss: 0.1938

- Wer: 0.1081



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 1000
- num_epochs: 10.0

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step  | Validation Loss | Wer    |

|:-------------:|:-----:|:-----:|:---------------:|:------:|

| 0.0849        | 1.0   | 5529  | 0.1938          | 0.1081 |

| 0.0788        | 2.0   | 11058 | 0.2289          | 0.1061 |

| 0.0183        | 3.0   | 16587 | 0.2809          | 0.1079 |

| 0.0322        | 4.0   | 22116 | 0.3088          | 0.1058 |

| 0.0273        | 5.0   | 27645 | 0.3222          | 0.1038 |

| 0.0204        | 6.0   | 33174 | 0.3532          | 0.1066 |

| 0.0605        | 7.0   | 38703 | 0.3542          | 0.1053 |

| 0.043         | 8.0   | 44232 | 0.3669          | 0.1049 |

| 0.0204        | 9.0   | 49761 | 0.3707          | 0.1036 |

| 0.0159        | 10.0  | 55290 | 0.3697          | 0.1031 |





### Framework versions



- Transformers 4.45.0.dev0

- Pytorch 2.4.0+cu124

- Datasets 2.18.1.dev0

- Tokenizers 0.19.1