--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - fsicoli/common_voice_18_0 metrics: - wer model-index: - name: whisper-large-v3-pt-3000h-4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fsicoli/common_voice_18_0 pt type: fsicoli/common_voice_18_0 config: pt split: None args: pt metrics: - name: Wer type: wer value: 0.10807174887892376 --- # whisper-large-v3-pt-3000h-4 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fsicoli/common_voice_18_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.1938 - Wer: 0.1081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0849 | 1.0 | 5529 | 0.1938 | 0.1081 | | 0.0788 | 2.0 | 11058 | 0.2289 | 0.1061 | | 0.0183 | 3.0 | 16587 | 0.2809 | 0.1079 | | 0.0322 | 4.0 | 22116 | 0.3088 | 0.1058 | | 0.0273 | 5.0 | 27645 | 0.3222 | 0.1038 | | 0.0204 | 6.0 | 33174 | 0.3532 | 0.1066 | | 0.0605 | 7.0 | 38703 | 0.3542 | 0.1053 | | 0.043 | 8.0 | 44232 | 0.3669 | 0.1049 | | 0.0204 | 9.0 | 49761 | 0.3707 | 0.1036 | | 0.0159 | 10.0 | 55290 | 0.3697 | 0.1031 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu124 - Datasets 2.18.1.dev0 - Tokenizers 0.19.1