fsicoli commited on
Commit
ec9fc26
·
verified ·
1 Parent(s): 76f5ef6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: openai/whisper-large-v3
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - fsicoli/cv19-fleurs
9
+ metrics:
10
+ - wer
11
+ model-index:
12
+ - name: whisper-large-v3-pt-cv19-fleurs
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: fsicoli/cv19-fleurs default
19
+ type: fsicoli/cv19-fleurs
20
+ args: default
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.0756
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # whisper-large-v3-pt-cv19-fleurs-ct2
31
+
32
+ This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fsicoli/cv19-fleurs default dataset converted to CT2.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1823
35
+ - Wer: 0.0756
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 6.25e-06
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 16
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 10000
63
+ - training_steps: 50000
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-------:|:-----:|:---------------:|:------:|
70
+ | 0.0559 | 2.2883 | 5000 | 0.1096 | 0.0730 |
71
+ | 0.0581 | 4.5767 | 10000 | 0.1326 | 0.0829 |
72
+ | 0.0225 | 6.8650 | 15000 | 0.1570 | 0.0849 |
73
+ | 0.0088 | 9.1533 | 20000 | 0.1704 | 0.0840 |
74
+ | 0.0065 | 11.4416 | 25000 | 0.1823 | 0.0849 |
75
+ | 0.006 | 13.7300 | 30000 | 0.1808 | 0.0809 |
76
+ | 0.0055 | 16.0183 | 35000 | 0.1811 | 0.0790 |
77
+ | 0.0031 | 18.3066 | 40000 | 0.1907 | 0.0784 |
78
+ | 0.0011 | 20.5950 | 45000 | 0.1852 | 0.0771 |
79
+ | 0.0003 | 22.8833 | 50000 | 0.1848 | 0.0756 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.45.0.dev0
85
+ - Pytorch 2.4.1
86
+ - Datasets 2.21.0
87
+ - Tokenizers 0.19.1