File size: 2,280 Bytes
742a8a7 38bbb8d 742a8a7 38bbb8d 742a8a7 38bbb8d 742a8a7 38bbb8d dcf17b0 742a8a7 38bbb8d 742a8a7 38bbb8d 58eee31 38bbb8d 742a8a7 38bbb8d 742a8a7 38bbb8d 742a8a7 38bbb8d 742a8a7 dcf17b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- fsicoli/cv16-fleurs
metrics:
- wer
model-index:
- name: whisper-medium-pt-cv16-fleurs
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fsicoli/cv16-fleurs default
type: fsicoli/cv16-fleurs
args: default
metrics:
- name: Wer
type: wer
value: 0.09421927983206846
language:
- pt
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-pt-cv16-fleurs
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv16-fleurs default dataset.
It achieves the following results on the [mozilla-foundation/common_voice_16_1](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1) evaluation set:
- Loss: 0.1409
- Wer: 0.0942
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5000
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2552 | 0.93 | 1000 | 0.2200 | 0.1220 |
| 0.1928 | 1.87 | 2000 | 0.1645 | 0.1062 |
| 0.1646 | 2.8 | 3000 | 0.1508 | 0.1016 |
| 0.1333 | 3.74 | 4000 | 0.1438 | 0.0970 |
| 0.1027 | 4.67 | 5000 | 0.1409 | 0.0942 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1
- Datasets 2.16.1
- Tokenizers 0.15.2 |