--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: whisper-large-v3-pt-cv16-fleurs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_1 pt type: mozilla-foundation/common_voice_16_1 config: pt split: test args: pt metrics: - name: Wer type: wer value: 0.11905377038591959 --- # whisper-large-v3-pt-cv16-fleurs This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_16_1 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.1975 - Wer: 0.1191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2614 | 0.06 | 1000 | 0.2986 | 0.1466 | | 0.2632 | 0.13 | 2000 | 0.2244 | 0.1316 | | 0.1694 | 0.19 | 3000 | 0.2086 | 0.1234 | | 0.1658 | 0.26 | 4000 | 0.1987 | 0.1205 | | 0.1391 | 0.32 | 5000 | 0.1975 | 0.1191 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1 - Datasets 2.16.1 - Tokenizers 0.15.2