fsicoli commited on
Commit
754c42e
·
verified ·
1 Parent(s): 0934507

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -82
README.md CHANGED
@@ -1,82 +1,82 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: openai/whisper-medium
5
- tags:
6
- - generated_from_trainer
7
- datasets:
8
- - fsicoli/cv16-fleurs
9
- metrics:
10
- - wer
11
- model-index:
12
- - name: whisper-medium-pt-cv16-fleurs2-lr
13
- results:
14
- - task:
15
- name: Automatic Speech Recognition
16
- type: automatic-speech-recognition
17
- dataset:
18
- name: fsicoli/cv16-fleurs default
19
- type: fsicoli/cv16-fleurs
20
- args: default
21
- metrics:
22
- - name: Wer
23
- type: wer
24
- value: 0.103035685451316
25
- ---
26
-
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
-
30
- # whisper-medium-pt-cv16-fleurs2-lr
31
-
32
- This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv16-fleurs default dataset.
33
- It achieves the following results on the evaluation set:
34
- - Loss: 0.1601
35
- - Wer: 0.1030
36
-
37
- ## Model description
38
-
39
- More information needed
40
-
41
- ## Intended uses & limitations
42
-
43
- More information needed
44
-
45
- ## Training and evaluation data
46
-
47
- More information needed
48
-
49
- ## Training procedure
50
-
51
- ### Training hyperparameters
52
-
53
- The following hyperparameters were used during training:
54
- - learning_rate: 6.25e-06
55
- - train_batch_size: 8
56
- - eval_batch_size: 8
57
- - seed: 42
58
- - gradient_accumulation_steps: 2
59
- - total_train_batch_size: 16
60
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
- - lr_scheduler_type: linear
62
- - lr_scheduler_warmup_steps: 5000
63
- - training_steps: 25000
64
- - mixed_precision_training: Native AMP
65
-
66
- ### Training results
67
-
68
- | Training Loss | Epoch | Step | Validation Loss | Wer |
69
- |:-------------:|:-------:|:-----:|:---------------:|:------:|
70
- | 0.0856 | 2.3343 | 5000 | 0.1601 | 0.1030 |
71
- | 0.0156 | 4.6685 | 10000 | 0.1831 | 0.1003 |
72
- | 0.0189 | 7.0028 | 15000 | 0.1996 | 0.0980 |
73
- | 0.0052 | 9.3371 | 20000 | 0.2079 | 0.0956 |
74
- | 0.0035 | 11.6713 | 25000 | 0.2088 | 0.0932 |
75
-
76
-
77
- ### Framework versions
78
-
79
- - Transformers 4.45.0.dev0
80
- - Pytorch 2.4.1
81
- - Datasets 2.21.0
82
- - Tokenizers 0.19.1
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: openai/whisper-medium
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - fsicoli/cv16-fleurs
9
+ metrics:
10
+ - wer
11
+ model-index:
12
+ - name: whisper-medium-pt-cv16-fleurs2-lr
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: fsicoli/cv16-fleurs default
19
+ type: fsicoli/cv16-fleurs
20
+ args: default
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.0932
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # whisper-medium-pt-cv16-fleurs2-lr
31
+
32
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv16-fleurs default dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2088
35
+ - Wer: 0.0932
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 6.25e-06
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 16
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 5000
63
+ - training_steps: 25000
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-------:|:-----:|:---------------:|:------:|
70
+ | 0.0856 | 2.3343 | 5000 | 0.1601 | 0.1030 |
71
+ | 0.0156 | 4.6685 | 10000 | 0.1831 | 0.1003 |
72
+ | 0.0189 | 7.0028 | 15000 | 0.1996 | 0.0980 |
73
+ | 0.0052 | 9.3371 | 20000 | 0.2079 | 0.0956 |
74
+ | 0.0035 | 11.6713 | 25000 | 0.2088 | 0.0932 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.45.0.dev0
80
+ - Pytorch 2.4.1
81
+ - Datasets 2.21.0
82
+ - Tokenizers 0.19.1