File size: 10,450 Bytes
515da60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
datasets.py

Lightweight PyTorch Dataset Definition for wrapping RLDS TFDS Pipeline; just defines transform from RLDS default
format to OpenVLA, IterableDataset shim.
"""

from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, Tuple, Type

import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset, IterableDataset
from transformers import PreTrainedTokenizerBase

from prismatic.models.backbones.llm.prompting import PromptBuilder
from prismatic.models.backbones.vision import ImageTransform
from prismatic.util.data_utils import tree_map
from prismatic.vla.action_tokenizer import ActionTokenizer
from prismatic.vla.datasets.rlds import make_interleaved_dataset, make_single_dataset
from prismatic.vla.datasets.rlds.oxe import OXE_NAMED_MIXTURES, get_oxe_dataset_kwargs_and_weights
from prismatic.vla.datasets.rlds.utils.data_utils import NormalizationType

# HuggingFace Default / LLaMa-2 IGNORE_INDEX (for labels)
IGNORE_INDEX = -100


@dataclass
class RLDSBatchTransform:
    action_tokenizer: ActionTokenizer
    base_tokenizer: PreTrainedTokenizerBase
    image_transform: ImageTransform
    prompt_builder_fn: Type[PromptBuilder]
    predict_stop_token: bool = True
    num_images: int = 1

    def __call__(self, rlds_batch: Dict[str, Any]) -> Dict[str, Any]:
        """Converts a RLDS batch to the format expected by the OpenVLA collator/models."""
        dataset_name, action = rlds_batch["dataset_name"], rlds_batch["action"][0]
        prompt_builder = self.prompt_builder_fn("openvla")
        lang = rlds_batch["task"]["language_instruction"].decode().lower()
        
        images = rlds_batch["observation"]["image_primary"]
        images = [Image.fromarray(image) for image in images]
        conversation = [
             {"from": "human", "value": f"Given a sequence of {self.num_images} past image observations in order, separated by a special separator token, what action should the robot take to {lang}?"},
             {"from": "gpt", "value": self.action_tokenizer(action)},
        ]

        # Construct Chat-based Prompt =>> Input is default query + language instruction, output are the action tokens
        for turn in conversation:
            prompt_builder.add_turn(turn["from"], turn["value"])

        # Tokenize (w/ `base_tokenizer`)
        input_ids = self.base_tokenizer(prompt_builder.get_prompt(), add_special_tokens=True).input_ids
        labels = list(input_ids)

        # Tensorize =>> Run Image Transform to get `pixel_values` =>> Return
        #   =>> IMPORTANT :: IF WE'RE USING HF LLM.forward(..., labels=labels), SHIFTING HAPPENS _INSIDE_ MODEL!
        input_ids, labels = torch.tensor(input_ids), torch.tensor(labels)
        
        pixel_values_dict = dict()
        for key in ['dino', 'siglip']:
            pixel_values = [self.image_transform(img)[key].unsqueeze(0) for img in images]
            pixel_values = torch.cat(pixel_values, dim=0)
            pixel_values_dict[key] = pixel_values

        # [CRITICAL] We do not want to take the loss for anything but the predicted action tokens!
        labels[: -(len(action) + 1)] = IGNORE_INDEX
        if not self.predict_stop_token:
            labels[-1] = IGNORE_INDEX

        return dict(pixel_values=pixel_values_dict, input_ids=input_ids, labels=labels, dataset_name=dataset_name)


class RLDSDataset(IterableDataset):
    def __init__(
        self,
        data_root_dir: Path,
        data_mix: str,
        batch_transform: RLDSBatchTransform,
        resize_resolution: Tuple[int, int],
        shuffle_buffer_size: int = 256_000,
        train: bool = True,
        image_aug: bool = False,
        history_window_size: int = 1,
    ) -> None:
        """Lightweight wrapper around RLDS TFDS Pipeline for use with PyTorch/OpenVLA Data Loaders."""
        self.data_root_dir, self.data_mix, self.batch_transform = data_root_dir, data_mix, batch_transform


        # Configure RLDS Dataset(s)
        if self.data_mix in OXE_NAMED_MIXTURES:
            mixture_spec = OXE_NAMED_MIXTURES[self.data_mix]
        else:
            # Assume that passed "mixture" name is actually a single dataset -- create single-dataset "mix"
            mixture_spec = [(self.data_mix, 1.0)]
            

        # fmt: off
        per_dataset_kwargs, weights = get_oxe_dataset_kwargs_and_weights(
            self.data_root_dir,
            mixture_spec,
            load_camera_views=("primary", "secondary"),
            load_depth=False,
            load_proprio=False,
            load_language=True,
            action_proprio_normalization_type=NormalizationType.BOUNDS_Q99,
        )
        rlds_config = dict(
            traj_transform_kwargs=dict(
                window_size=history_window_size,                    # If we wanted to feed / predict more than one step
                future_action_window_size=0,                        # For action chunking
                skip_unlabeled=True,                                # Skip trajectories without language labels
                goal_relabeling_strategy="uniform",                 # Goals are currently unused
            ),
            frame_transform_kwargs=dict(
                resize_size=resize_resolution,
                num_parallel_calls=16,                          # For CPU-intensive ops (decoding, resizing, etc.)
            ),
            dataset_kwargs_list=per_dataset_kwargs,
            shuffle_buffer_size=shuffle_buffer_size,
            sample_weights=weights,
            balance_weights=True,
            traj_transform_threads=len(mixture_spec),
            traj_read_threads=len(mixture_spec),
            train=train,
        )

        # If applicable, enable image augmentations
        if image_aug:
            rlds_config["frame_transform_kwargs"].update({"image_augment_kwargs" : dict(
                random_resized_crop=dict(scale=[0.9, 0.9], ratio=[1.0, 1.0]),
                random_brightness=[0.2],
                random_contrast=[0.8, 1.2],
                random_saturation=[0.8, 1.2],
                random_hue=[0.05],
                augment_order=[
                    "random_resized_crop",
                    "random_brightness",
                    "random_contrast",
                    "random_saturation",
                    "random_hue",
                ],
            )}),
        # fmt: on

        # Initialize RLDS Dataset
        self.dataset, self.dataset_length, self.dataset_statistics = self.make_dataset(rlds_config)

    def make_dataset(self, rlds_config):
        return make_interleaved_dataset(**rlds_config)

    def __iter__(self) -> Dict[str, Any]:
        for rlds_batch in self.dataset.as_numpy_iterator():
            yield self.batch_transform(rlds_batch)

    def __len__(self) -> int:
        return self.dataset_length

    # === Explicitly Unused ===
    def __getitem__(self, idx: int) -> None:
        raise NotImplementedError("IterableDataset does not implement map-style __getitem__; see __iter__ instead!")


class EpisodicRLDSDataset(RLDSDataset):
    """Returns full episodes as list of steps instead of individual transitions (useful for visualizations)."""

    def make_dataset(self, rlds_config):
        per_dataset_kwargs = rlds_config["dataset_kwargs_list"]
        assert len(per_dataset_kwargs) == 1, "Only support single-dataset `mixes` for episodic datasets."

        return make_single_dataset(
            per_dataset_kwargs[0],
            train=rlds_config["train"],
            traj_transform_kwargs=rlds_config["traj_transform_kwargs"],
            frame_transform_kwargs=rlds_config["frame_transform_kwargs"],
        )

    def __iter__(self) -> Dict[str, Any]:
        for rlds_batch in self.dataset.as_numpy_iterator():
            out = [
                self.batch_transform(tree_map(lambda x: x[i], rlds_batch))  # noqa: B023
                for i in range(rlds_batch["action"].shape[0])
            ]
            yield out


class DummyDataset(Dataset):
    def __init__(
        self,
        action_tokenizer: ActionTokenizer,
        base_tokenizer: PreTrainedTokenizerBase,
        image_transform: ImageTransform,
        prompt_builder_fn: Type[PromptBuilder],
    ) -> None:
        self.action_tokenizer = action_tokenizer
        self.base_tokenizer = base_tokenizer
        self.image_transform = image_transform
        self.prompt_builder_fn = prompt_builder_fn

        # Note =>> We expect the dataset to store statistics for action de-normalization. Specifically, we store the
        # per-dimension 1st and 99th action quantile. The values below correspond to "no normalization" for simplicity.
        self.dataset_statistics = {
            "dummy_dataset": {
                "action": {"q01": np.zeros((7,), dtype=np.float32), "q99": np.ones((7,), dtype=np.float32)}
            }
        }

    def __len__(self):
        # TODO =>> Replace with number of elements in your dataset!
        return 10000

    def __getitem__(self, idx):
        # TODO =>> Load image, action and instruction from disk -- we use dummy values
        image = Image.fromarray(np.asarray(np.random.rand(224, 224, 3) * 255.0, dtype=np.uint8))
        action = np.asarray(np.random.rand(7), dtype=np.float32)
        instruction = "do something spectacular"

        # Add instruction to VLA prompt
        prompt_builder = self.prompt_builder_fn("openvla")
        conversation = [
            {"from": "human", "value": f"What action should the robot take to {instruction}?"},
            {"from": "gpt", "value": self.action_tokenizer(action)},
        ]
        for turn in conversation:
            prompt_builder.add_turn(turn["from"], turn["value"])

        # Tokenize (w/ `base_tokenizer`)
        input_ids = self.base_tokenizer(prompt_builder.get_prompt(), add_special_tokens=True).input_ids
        labels = list(input_ids)

        # Tensorize =>> Run Image Transform to get `pixel_values` =>> Return
        #   =>> IMPORTANT :: IF WE'RE USING HF .forward(..., labels=labels), SHIFTING HAPPENS _INSIDE_ MODEL!
        input_ids, labels = torch.tensor(input_ids), torch.tensor(labels)
        pixel_values = self.image_transform(image)

        # [CRITICAL] We do not want to take the loss for anything but the predicted action tokens!
        labels[: -(len(action) + 1)] = IGNORE_INDEX

        return dict(pixel_values=pixel_values, input_ids=input_ids, labels=labels)